Watershed Sciences 4930 & 6920
GEOGRAPHIC INFORMATION SYSTEMS

WEEK Five
TERRESTRIAL LASER SCANNING
(AKA GROUND BASED LiDAR)

Joe Wheaton

PURPOSE OF TODAY’S DEMONSTRATION

- Introduce you to TLS
- Demystify TLS & LiDAR
TODAY’S PLAN...

I. What is TLS?
II. Let’s see this thing in action
III. What can be done with it?
IV. Is this the future?

ACTIVE AND PASSIVE REMOTE SENSING
RECALL LI DAR

- Airborne-LiDaR
WHAT IS TLS?

- LiDaR from the ground...
- **Terrestrial Laser Scanner**
 (a.k.a. ground-based LiDaR)

SORT OF LIKE A TOTAL STATION...

- Normal total station needs a reflector target...
- Reflectorless, just looks for a return off any surface
- TLS, like reflectorless... on speed.
RECALL TOTAL STATION SURVEYING

FIRE THE SMART ONE...

• Who’s the smarter one?

Who’s on the dumb end of a stick now...
A GUN AND A ROD...

- Gun shoots and record
- Prism on rod reflects
- Technically an example of active remote sensing...

TS CALCULATES - DISTANCES

Slope Distance is Calculated:
- Gun shoots beam
- Beam reflected back off prism
- Time is recorded
- Based on speed of light, slope distance is calculated

\[SD = t \cdot V_{\text{Light}} \]
THE PRISM or REFLECTOR (WHAT IS SHOT)

They go on top of the pole...

- Standard unidirectional prism
- Fancy, 360° prism
- Multiple prisms (for long distances)
- Nothing (reflectorless)

Allows: a) lower intensity laser, b) greater distances, c) non ambiguous returns

TS MEASURES - ANGLES

- Measures horizontal angles (azimuths or bearings)
- Measures vertical angles (zenith)

- Can only do this relative to a horizontal plane
- Horizontal plane exists because instrument is "leveled"
TOTAL STATION SURVEYING - HORIZONTAL DEFINITIONS

- This diagram shows how you get your \(x \) & \(y \) coordinate values at each surveyed point...

TOTAL STATION SURVEYING - VERTICAL DEFINITIONS

- This diagram shows how you get the \(z \) coordinate \(R_z \) of the point you want to survey
SO A TLS IS LIKE A REFLECTORLESS TOTAL STATION... ON METH.
DIFFERENT INSTRUMENTS & SOFTWARE

Different instruments help address different scales of questions (same technology)

Leica
- Shorter range (up to 300 m)
- Higher Resolution & Accuracy (2-5 mm)

Riegl
- Longer range (up to 2 or 8 km)
- Lower Resolution & Accuracy (10 mm)

LOTS OF OPTIONS OUT THERE

- Trimble GX
- Optech ILRIS-3D
- Leica ScanStation C10
- Leica HDS4400
- Leica Cyclone 6.0
- Riegl VZ
TODAY’S PLAN...

I. What is TLS?
II. Let’s see this thing in action
III. What can be done with it?
IV. Is this the future?
RADIOHEAD – HOUSE OF CARDS

- No cameras or lights used….
- Just a Terrestrial Laser Scanner

SOME APPLICATIONS ALREADY IN USE:

- Quantifying 3D-Structure of Wildlife habitat
- Mapping forests fuels for fire modeling
- Quantifying forest growth rates to estimate above ground carbon sequestration
- Calculating growth rates
- Mapping stratigraphy and structural geology
- Lichenometry
- Complex hydraulics in bedrock rivers
- Quantifying form drag & flow resistance from complex morphologies and vegetation
- Calculating surface roughness
- Morphological Sediment budgeting
TLS SCALE-FREE?

- High sampling rate enables landform recording at scales from the grain up to the reach in one single, integrated dataset
- Captures everything (three orders of magnitude more data)

Registered Feshie 2007 Scans

> 250,000,000 xyz
Photorendered Point cloud

12 scans registered

Density (median) = ~1400pts/m²

> 250 coincident tie-points

RMSE:
Control = 7 mm
Check = 8 mm
MAPPING PARTICLE GRAIN SIZES

REACH SCALE GSD MAP: RIVER FESHI E 2007
GLASGOW CITY MODEL

Image from Riegl:

Glasgow City Model:
CHARACTERIZING HYDRAULIC HABITAT

From Large & Heritage (2007)

CHARACTERIZING VEGETATED ROUGHNESS

- Relate projected area (frontal area drag) from TLS to Airborne LiDaR
- Map roughness spatially over much larger areas...

From Manners et al. (In Prep)
A CHALLENGE...

ONE SMALL PROBLEM...

- NearIR LiDaR does not penetrate the water surface
WATER SURFACE TOPOGRAPHY

COASTAL CLIFF EROSION

Plate 11.3 Projection plane view of the southwest face of the Nukhiu syncline outcrop (see Figures 11.5-11.7 with a four times vertical exaggeration. Note the presence of a subtle anticline structure visible in the projection plane. This feature is not easily visible in the field, and is only clearly visible in vertically exaggerated data. The feature is also visible in the contour map in Figure 11.5.
Plate 15.3 Orthoimage of the Red Nabbs headland overlaid with a shapefile locating the spatial extent and position of changes recorded over the monitoring period. The headland was relatively stable throughout the monitored period with concentrations of change on vertical steps in the cliff face (Inset a) and towards the seaward edge of the site where the largest failure occurred (Inset b).

Plate 15.4 Sections of the surveys collected during January and February 2004 (a) illustrate a significant failure from undercut cliff material. An additional, smaller failure was revealed (b) through high-resolution differencing analysis (c). The LSS approach therefore indicates that the larger loss failed through a tangential sliding mechanism, removing the adjacent cliff toe below in the process.
OTHER APPLICATIONS

• Architectural
• Pipe-networks
• Animation industry
• Crime-scene/accident inventory
• Archeology
• Heritage Scanning
• Civil Infrastructure

TODAY’S PLAN...

I. What is TLS?
II. Let’s see this thing in action
III. What can be done with it?
IV. Is this the future?
FUNDAMENTAL CHANGE IN PROBLEM

- From an era of being fundamentally data poor to being data rich
- Too much data can be just as bad as the real world...

TODAY’S PLAN...

I. What is TLS?
II. Let’s see this thing in action
III. What can be done with it?
IV. Is this the future?
SOME WEBSITES...

Groups:
- ISPRS: http://www.isprs.org/technical_commissions/wgtc_5.aspx

Projects:
- Rees Scan: http://www.reesscan.org
- Guang Zheng’s Forestry Research: http://staff.washington.edu/guangz/Forest%20inventory%20characterization%20from%20GBL.htm

Manufacturers
- Leica: http://hds.leica-geosystems.com
- Optech: http://www.optech.ca/3dhome.htm

GOOD BOOK ON TLS

- Laser Scanning for the Environmental Sciences
- Most of text online: http://www3.interscience.wiley.com/cgi-bin/bookhome/122380460