Watershed Sciences 4930 & 6920
GEOGRAPHIC INFORMATION SYSTEMS

WEEK EIGHT - Lecture
MORPHOMETRIC ANALYSES

Joe Wheaton

HOUSEKEEPING - AFTER

• Lab
 - DEM wrap up
 - Lab 7

READING FOR TODAY

TODAY’S PLAN

I. Is it just a DEM?
II. Morphometric Analyses
 I. Slope
 II. Aspect
 III. Curvature
III. Combined for Landform Classification
IV. Watershed Delineation

WHAT’S THIS? WHERE’S THIS?

• A hillshade is a morphometric analysis...
• Metrics (measurement) of morphology (i.e. topography)
WHAT CAN YOU DO WITH A DEM?

LiDaR-DERIVED HILLSHADE

Just pretty pictures?

AERIAL PHOTOGRAPH (LiDaR DRAPING)

Well, georeferenced / 3D pretty pictures…

DEM MORPHOMETRIC ANALYSES

- Hillshade
- Slope Analysis (affects the overall rate of movement downslope)
- Aspect (defines direction of flow)
- Profile Curvature (acceleration and deceleration of flow)
- Planform Curvature (convergence and divergence of flow)
- Landform Classification
- Watershed/Catchment Hydrology
- Slope Stability
- Viewshed Analysis
- DEM Difference

TODAY’S PLAN

I. Is it just a DEM?

II. Morphometric Analyses

 1. Slope
 2. Aspect
 3. Curvature

III. Combined for Landform Classification

IV. Watershed Delineation

CALCULATING SLOPE - 1D

- The slope affects the overall rate of movement downslope
- Proxy for energy grade line in hydrology

\[
\tan \theta = \frac{\text{slope}}{\text{run}}
\]

\[
\text{slope} = \frac{\text{rise}}{\text{run}} \times 100
\]

\[
\theta = \tan^{-1}(A/B)
\]

To convert from percent slope to degrees, apply formula, e.g. 3% = how many degrees?

\[
A/B = 3/100 = 0.03
\]

\[
\theta = \tan^{-1}(0.03) = 1.72\text{ degrees}
\]
CALCULATING SLOPE – 2D (VECTOR BASED)

- Distance between contours
 - Close together = steep
 - Far apart = shallow

CALCULATING SLOPE – 2D (RASTER BASED)

- How do you do that?

CALCULATING SLOPE – 2D (RASTER BASED)

- What do I need to know to calculate
 - An elevation difference (I've got 8 or maybe 12)
 - A distance (I've got 2 or maybe 3)
- Then what?

CALCULATING SLOPE – 2D (RASTER BASED)

- Absolute Maximum slope
- Maximum of +ve slope
- Average of +ve slopes
- Minimum of +ve slopes
- Slope entering (-ve) vs. exiting (+ve)
- Hydraulic vs. Sediment (energy grade line, water surface slope, bed slope)

WHO CARES ABOUT SLOPE?

- Measure of potential energy (for going down)
- Indicator of energy expenditure required (for going up)

HOW DID THEY GET THAT?

Well... they had a DEM, they had a route... extracted a profile and calculated a derivative over some dx
PROFILING

Extract raster values (DEM elevations) along a polyline at every vertex...

IN ARCGIS

- Slope is the rate of maximum change in z-value from each cell.
- The use of a z-factor is essential for when surface z units are expressed in units different from ground x,y units
- The range of slope values in degrees is 0 to 90. For percent rise, the range is 0 for near infinity. A flat surface is 0 percent, a 45 degree surface is 100 percent

YOU’LL DO THIS FOR BIG COTTONWOOD CANYON

TODAY’S PLAN

I. Is it just a DEM?
II. Morphometric Analyses
 I. Slope
 II. Aspect
 III. Curvature
III. Combined for Landform Classification
IV. Watershed Delineation

ASPECT – WHAT IS IT?

- Steepest downslope direction from each cell to its neighbours
- The direction slope faces

ASPECT – WHO CARES?

- Determines exposure to insolation (sol = sun) and winds...
ASPECT IN ARCGIS

- Aspect is the direction of the maximum rate of change in the z-value from each cell in a raster surface.
- Aspect is expressed in positive degrees from 0 to 359.9, measured clockwise from north.
- Cells in the input raster that are flat—with zero slope—are assigned an aspect of -1.

TODAY’S PLAN

I. Is it just a DEM?
II. Morphometric Analyses
 I. Slope
 II. Aspect
 III. Curvature
III. Combined for Landform Classification
IV. Watershed Delineation

CURVATURE

- Second derivative of elevation
- Derivative of slope (i.e. the rate of change of slope)

\[\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \]

Calculated on a cell-by-cell basis. For each cell, a fourth-order polynomial of the form:

\[Z = Ax^2y^2 + Bx^2y + Cxy^2 + Dx^2 + Ey^2 + Fxy + Gx + Hy + I \]

is fit to a surface composed of a 3 x 3 window.

GRID RESOLUTION DEPENDENCE!

- 2 m LiDAR DEM vs. 25 m DEM

CURVATURE CAN BE BROKEN DOWN

- Component parts are profile (slopes) and planform (contours) curvature

<table>
<thead>
<tr>
<th></th>
<th>(z_1)</th>
<th>(z_2)</th>
<th>(z_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{plan curvature} = \frac{b}{(d + c - d^2 - 9b) / c^2} \]
\[\text{profile curvature} = \frac{a}{(d^2 - 8d - 9a) / d^2} \]

PROFILE CURVATURE

- Curvature = Acceleration
- + Curvature = Deceleration
- - Convex Slope
- + Concave Slope
PROFILE CURVATURE
- Curvature = Acceleration
+ Curvature = Deceleration
- Convex Slope
+ Concave Slope

BIG COTTONWOOD PROFILE CURVATURE

PLANFORM CURVATURE
+ Curvature = Divergent Slope
- Curvature = Convergent Slope
0 = Planar Slope
+ Dry (ridges)
- Wet (hollows)
TODAY’S PLAN
I. Is it just a DEM?
II. Morphometric Analyses
 I. Slope
 II. Aspect
 III. Curvature
III. Combined for Landform Classification
IV. Watershed Delineation
V. DEM Differencing

ALL IN ONE...
• So what could one do with slope, curvature and aspect?

LANDFORM CLASSIFICATION
• Based on these definitions

LANDFORMS CLASSIFICATION
• Fuzzy landform classification
• Degree of membership in each class as opposed to crisp classification... (LANDSERF)
TODAY’S PLAN

I. Is it just a DEM?

II. Morphometric Analyses
 I. Slope
 II. Aspect
 III. Curvature

III. Combined for Landform Classification

IV. Watershed Delineation

DERIVE WATERSHED…

- Use confluence with Logan River as pour point
- Play the raindrop game...
 - I fall where I fall, but can only flow downhill (i.e. perpendicular to contours)
 - I shed away from ridges and collect in hollows...

JUST DEM...

DEM & BNDY

- Watershed in Red....

ON USGS MAP

DELI NEATI ON EXCERCISE
WATERSHED DELINEATION

• 4 Basic Steps
 • Assumes gravity is dominant factor influencing flow direction

1. PIT-FILLING
 • Sinks should be filled to ensure proper delineation of basins and streams.
 • If the sinks are not filled, a derived drainage network may be discontinuous.

2. FLOW DIRECTION
 • What do we call this?

3. FLOW ACCUMULATION
 • Count of number of cells upstream (based on flow direction)
 • High values indicate greater accumulation

4. DEFINE POUR POINTS
 • AKA Basin Outlets
 • Very sensitive to DEM grid resolution!

5. WATERSHED DELINEATED!
 • A catchment boundary defined
 • Numerous scales (e.g. hydrologic units)
 • Helpful as input into hydrologic models
FLOW ACCUMULATION: CAN ALSO BE USED FOR...

- Stream channel network delineation
 - Threshold at some arbitrary resolution-dependent value

DRAINAGE NETWORK DEFINED

- Connect cells above threshold
- Stream Order

SUMMARY

I. Is it just a DEM?
II. Morphometric Analyses
 I. Slope
 II. Aspect
 III. Curvature
III. Combined for Landform Classification
IV. Watershed Delineation

READING FOR THURSDAY

Reading for Thursday, March 3rd

Read Chapter 12 on Interpolation from Deline (2008)
See summary: Interpolation_Tools