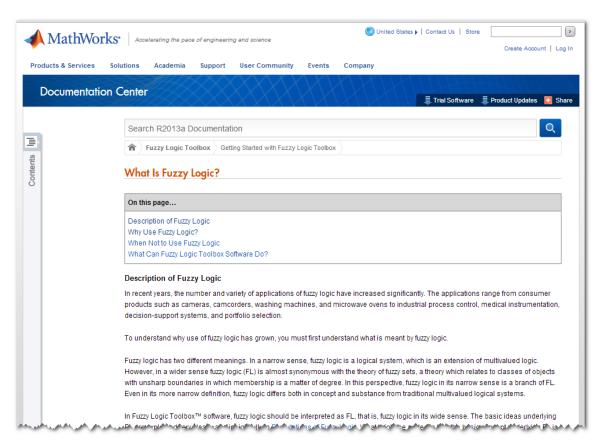
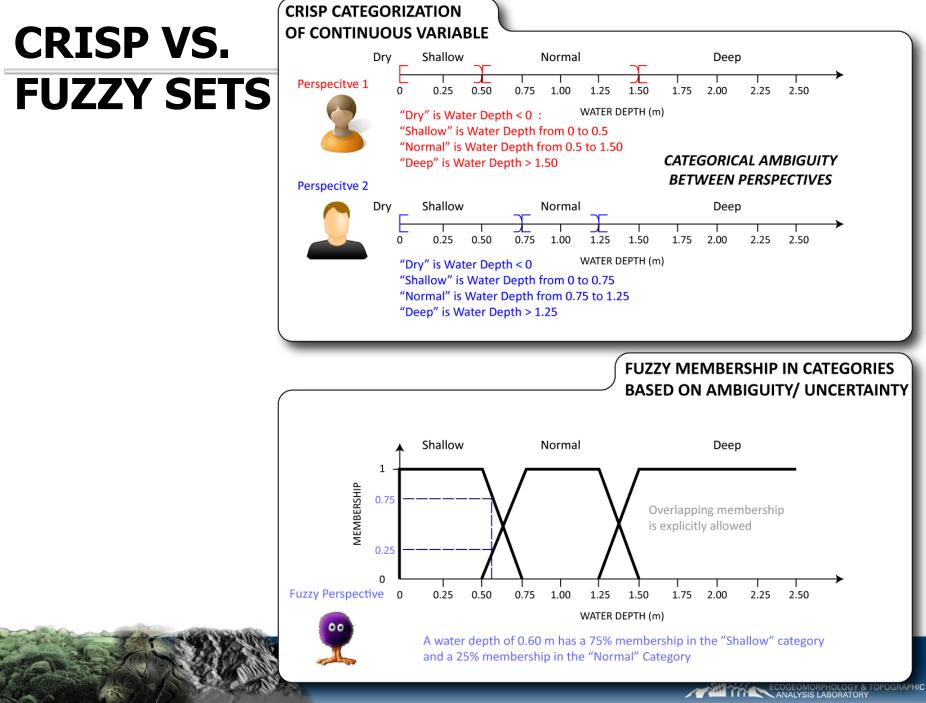

FUZZY INFERENCE SYSTEMS

WATS 4931/6921: OPTIONAL SESSION *April 10, 2014*

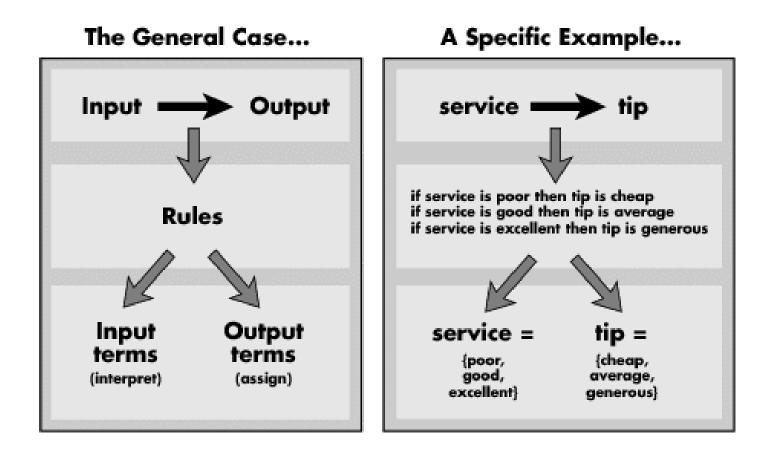
FIS WORKSHOP PLAN

A. Some Terminology & Definitions

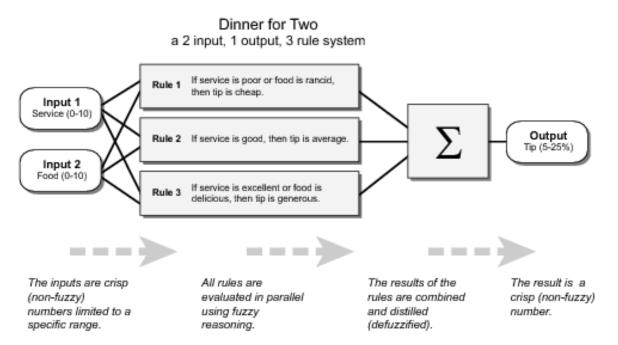

- B. Building your own Inference System
- C. Some Example FIS Applications
- D. Building an FIS
- E. Applying FIS in Matlab
 - F. Applying FIS spatially
 - G. Building Your Own FIS
 - H. Summary of Key Concepts


SOME TERMS...

- Fuzzy Sets vs. Crisp Sets
- Fuzzy Logic
- Fuzzy Inference



www.mathworks.com/help/fuzzy/what-is-fuzzy-logic.html


AN INFERENCE SYSTEM – RULE BASED

FUZZY INFERENCE PROCESS

Process of **formulating mapping** from a given input to an output using fuzzy logic.

- Parallel nature of rules essential
- Instead of sharp switching, logic flows smoothly from regions where behavior is dominated by either one rule or another

www.mathworks.com/help/fuzzy/fuzzy-inference-process.html

FIS WORKSHOP PLAN

- A. Some Terminology & Definitions
- **B.** Building your own Inference System
- C. Some Example FIS Applications
- D. Building an FIS
- E. Applying FIS in Matlab
 - F. Applying FIS spatially
 - G. Building Your Own FIS
 - H. Summary of Key Concepts

WHAT IS AN INFERENCE SYSTEM

- AKA:
 - Rule table
 - Look up Table
- Given inputs a, b, N -> output is?

AN INFERENCE SYSTEM OR RULE TABLE

- All Words...
 - E.g. Rule 1: 'If suitability of streamside vegetation is *unsuitable* and suitability of riparian/upland vegetation is *unsuitable*, then the dam density capacity is NONE
- How many inputs?
- How many categories for each input?
- How many output categories?
- Why 25 rules?

		INPUTS				OUTPUT
	IF	Suitability of Streamside Vegetation		Suitability of Riparian/Upland Vegetation		Dam Density Capacity
	1	Unsuitable	&	Unsuitable	, then	None
	2	Barely Suitable	&	Unsuitable	, then	Occasional
	3	Moderately Suitable	&	Unsuitable	, then	Occasional
	4	Suitable	&	Unsuitable	, then	Occasional
	5	Preferred	&	Unsuitable	, then	Frequent
	6	Unsuitable	&	Barely Suitable	, then	Occasional
	7	Barely Suitable	&	Barely Suitable	, then	Occasional
RULES	8	Moderately Suitable	&	Barely Suitable	, then	Occasional
	9	Suitable	&	Barely Suitable	, then	Frequent
	10	Preferred	&	Barely Suitable	, then	Frequent
	11	Unsuitable	&	Moderately Suitable	, then	Occasional
	12	Barely Suitable	&	Moderately Suitable	, then	Occasional
	13	Moderately Suitable	&	Moderately Suitable	, then	Frequent
	14	Suitable	&	Moderately Suitable	, then	Frequent
	15	Preferred	&	Moderately Suitable	, then	Frequent
	16	Unsuitable	&	Suitable	, then	Occasional
	17	Barely Suitable	&	Suitable	, then	Occasional
	18	Moderately Suitable	&	Suitable	, then	Frequent
	19	Suitable	&	Suitable	, then	Frequent
	20	Preferred	&	Suitable	, then	Frequent
	21	Unsuitable	&	Preferred	, then	Occasional
	22	Barely Suitable	&	Preferred	, then	Frequent
	23	Moderately Suitable	&	Preferred	, then	Frequent
	24	Suitable	&	Preferred	, then	Pervasive
	25	Preferred	&	Preferred	, then	Pervasive

HOW WOULD I WRITE PSEUDO CODE FOR AN INFERENCE SYSTEM?

• Let's write it out...

PROs & CONs of INFERENCE SYSTEM

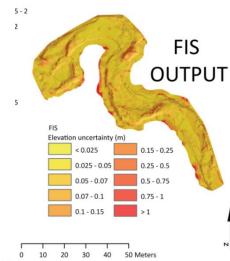
Pros

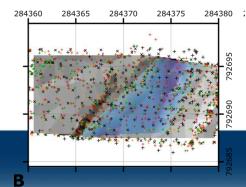
- Easy to apply and transparent
- Flexibility in number of inputs and categories

Cons

- Potentially subjective expert judgment
- Number of rules can grow... substantially

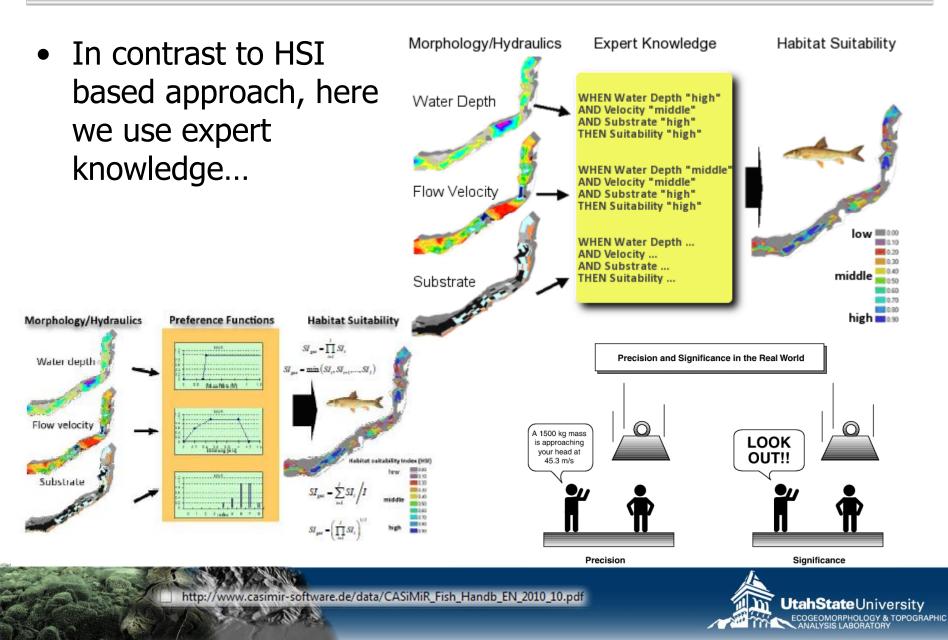
FIS WORKSHOP PLAN


- A. Some Terminology & Definitions
- B. Building your own Inference System
- C. Some Example FIS Applications
- D. Building an FIS
- E. Applying FIS in Matlab
 - F. Applying FIS spatially
 - G. Building Your Own FIS
 - H. Summary of Key Concepts

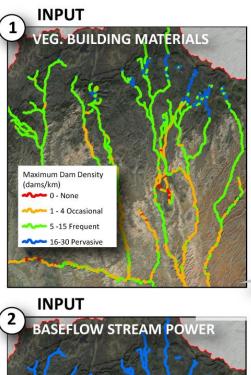


ELEVATION UNCERTAINTY

- Given a point cloud
- Relationship between topographic complexity (slope) and sampling (point density)



Rule:	Inp	uts	Output
	Slope	Ρt. <i>ρ</i>	$\delta(z)$
	%	${\sf m}/{\sf pts}^2$	m
1	Low	Low	Average
2	Low	Medium	Low
3	Low	High	Low
4	Medium	Low	High
5	Medium	Medium	High
6	Medium	High	Average
7	High	Low	Extreme
8	High	Medium	High
9	High	High	High

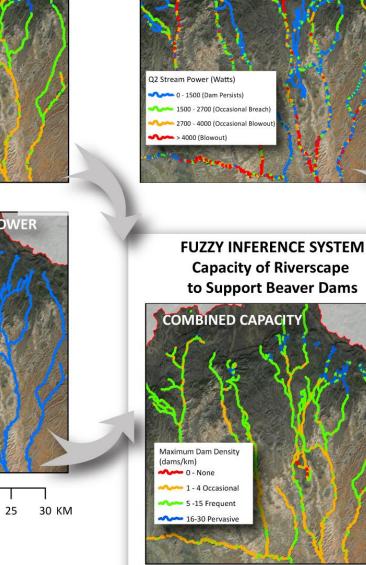


FISH... OR FROG HABITAT

BEAVER

- 1. Veg FIS
- 2. Baseflow (can they build a dam?)
- 2 Year Flood (does dam blow out)
- = Resulting Capacity

Baseflow Stream Power (Watts)

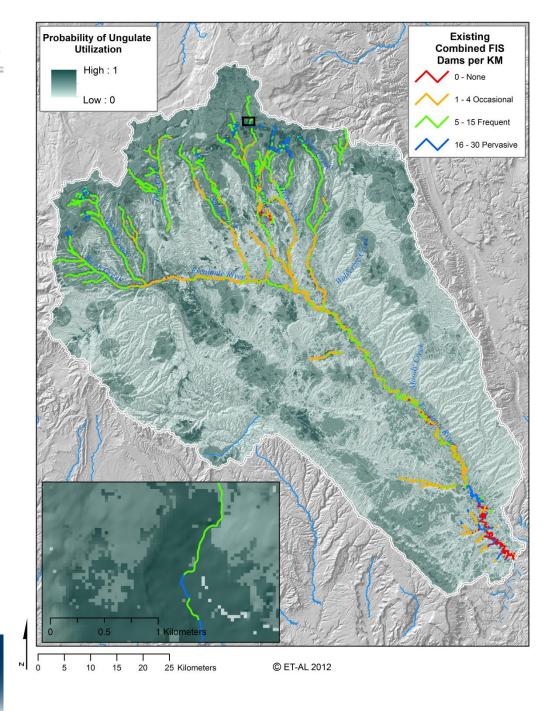

5

185-360 (Probably can build dam)
 > 360 (Cannot build dam)

10

15

20



OUTPUT

INPUT

2-YEAR FLOOD STREAM POWER

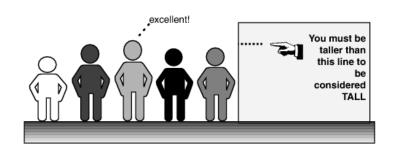
COWS & BEAVER

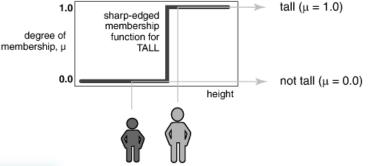
ADVANTAGES OF FIS...

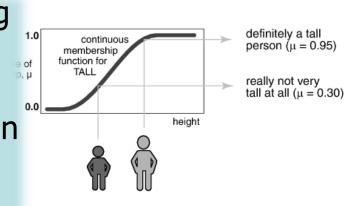
- Knowledge about linkages is **imprecise**
- Fuzzy logic calculations consider multivariate effects (no assumption of independence)
- New parameters incorporated easily
- Few observations needed
- Calculation is understandable (no black box effect)
- High **flexibility** and adaptability

SOME LIMITATIONS

- FIS inputs need to be represented as continuous variables*
- FIS output must be a continuous variable
- Many scientists are unfamiliar with fuzzy logic

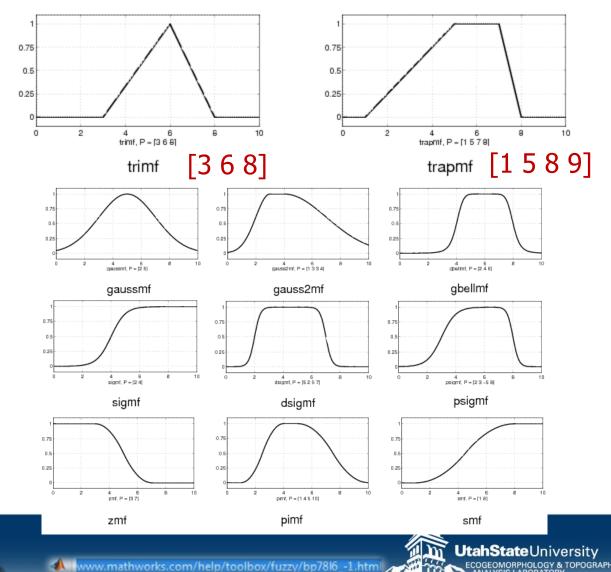

FIS WORKSHOP PLAN


- A. Some Terminology & Definitions
- B. Building your own Inference System
 - . Some Example FIS Applications
- D. Building an FIS
 - E. Applying FIS in Matlab
 - F. Applying FIS spatially
 - G. Building Your Own FIS
 - H. Summary of Key Concepts

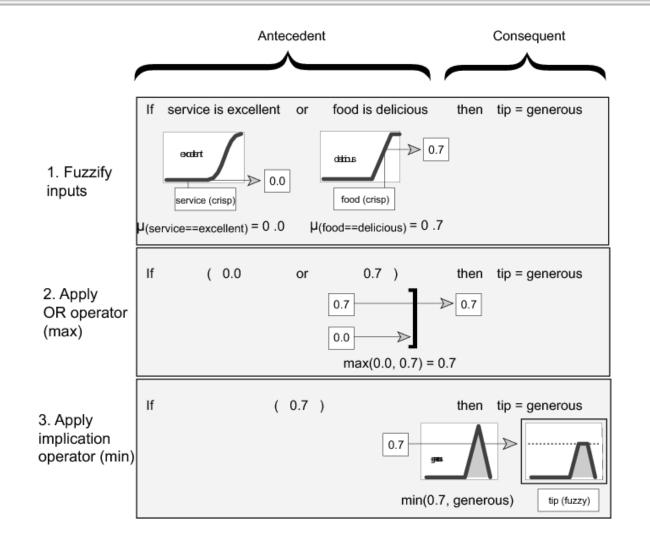


MEMBERSHIP FUNCTIONS — e.g. SEASONS & TALL

- Fuzzy set theory... useful for classifying continuous variables
- "A *fuzzy set* is a set without a crisp, clearly defined boundary. It can contain elements with only a partial degree of membership." –



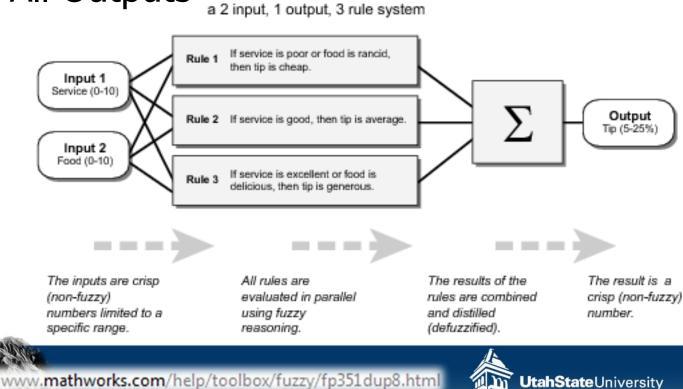
"A *membership function* (MF) is a curve that defines how each point in the input space is mapped to a membership value (or degree of membership) between 0 and 1."



MEMBERSHIP FUNCTIONS CAN HAVE LOTS OF DIFFERENT SHAPES

- Triangular
- Trapezoidal
- Guassian
- Sigmoidal
- Polynomial

FUZZY INFERENCE SYSTEMS: USES IF, THEN RULES

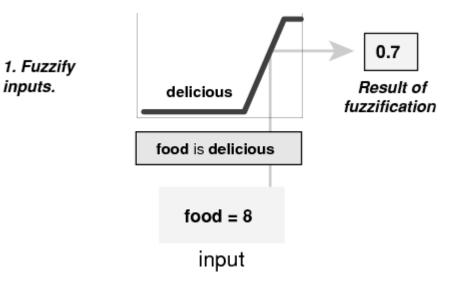


STEPS IN RUNNING AN FIS (UNDER THE HOOD)

- 1. Fuzzify Inputs
- 2. Apply Fuzzy Operator
- 3. Apply Implication Method

CAN PART

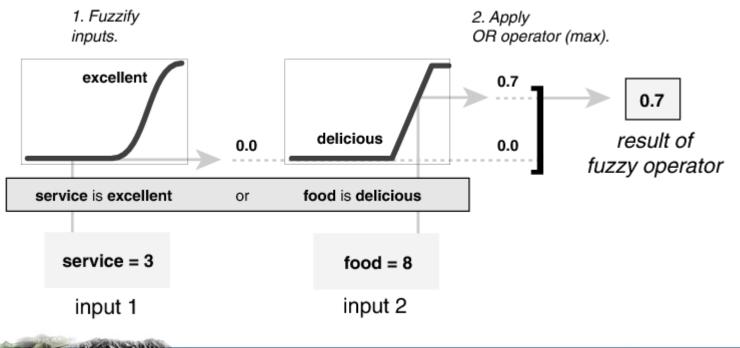
- 4. Aggregate All Outputs
- 5. Defuzzify



ECOGEOMORPHOLOGY & TOPOGRAPHIC

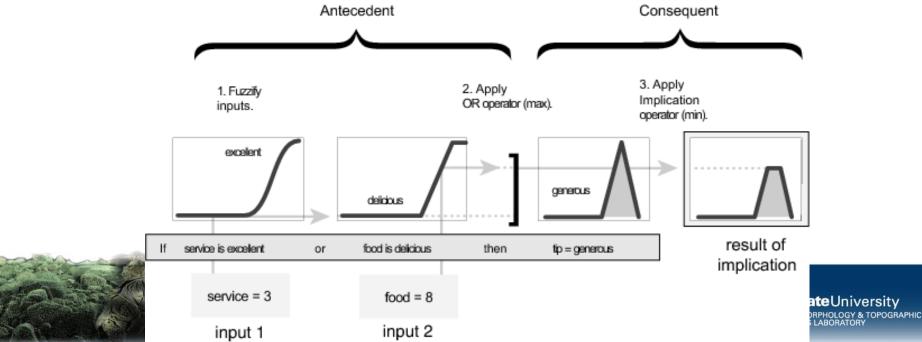
Dinner for Two

STEP 1: FUZZIFY INPUTS


- Go from crisp (continuous) input to fuzzy membership
- Can only be done once input membership functions are defined

STEP 2: APPLY FUZZY OPERATOR

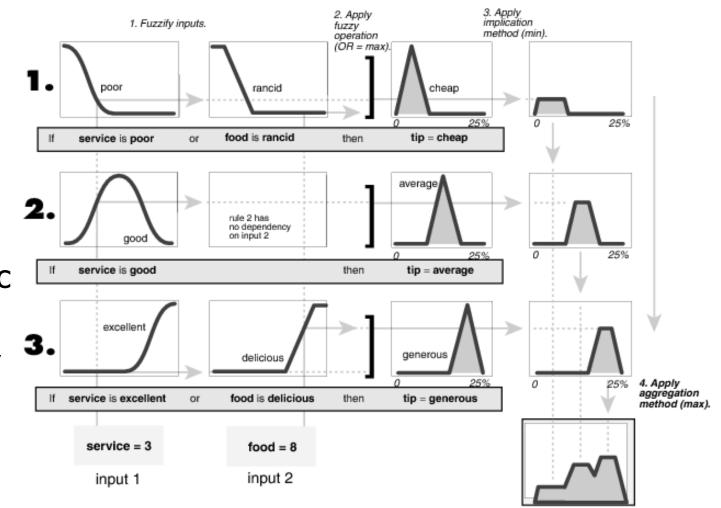
- **AND** methods are supported: *min* (minimum) and prod (product).
- OR methods are also supported: max (maximum), and the probabilistic OR method probor (also known as the algebraic sum) is calculated according to the equation: probor(a,b) = a + b ab



www.mathworks.com/help/toolbox/fuzzy/fp351dup8.html

STEP 3: APPLY IMPLICATION METHOD

- A **consequent** is a fuzzy set, which weights appropriately the linguistic characteristics that are attributed to it.
- Reshaped using a function associated with the **antecedent** (a single number).
- Input for implication process is a single number given by the antecedent, and the output is a fuzzy set. Implication is implemented for each rule.


STEP 4: AGGREGATE ALL OUTPUTS

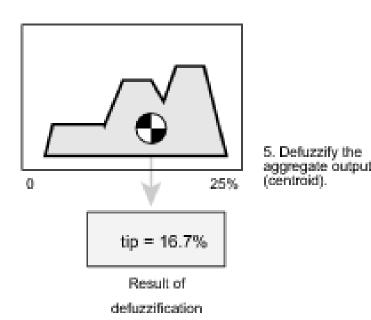
Three built-in methods are supported:

max (maximum)

 probor (probabilistic OR)

 sum (simply the sum of each rule's output set)

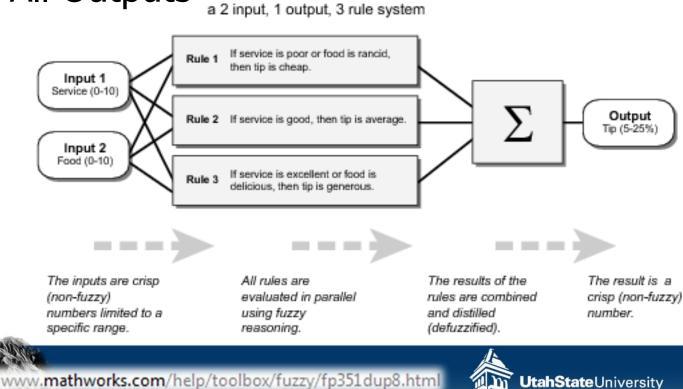
Result of aggregation


www.mathworks.com/help/toolbox/fuzzy/fp351dup8.html

25%

STEP 5: DE-FUZZIFY OUTPUTS

- Five built-in methods supported:
 - Centroid
 - bisector
 - middle of maximum
 - largest of maximum
 - smallest of maximum
- Centroid most popular defuzzification method returns the center of area under the curve.



STEPS IN RUNNING AN FIS (UNDER THE HOOD)

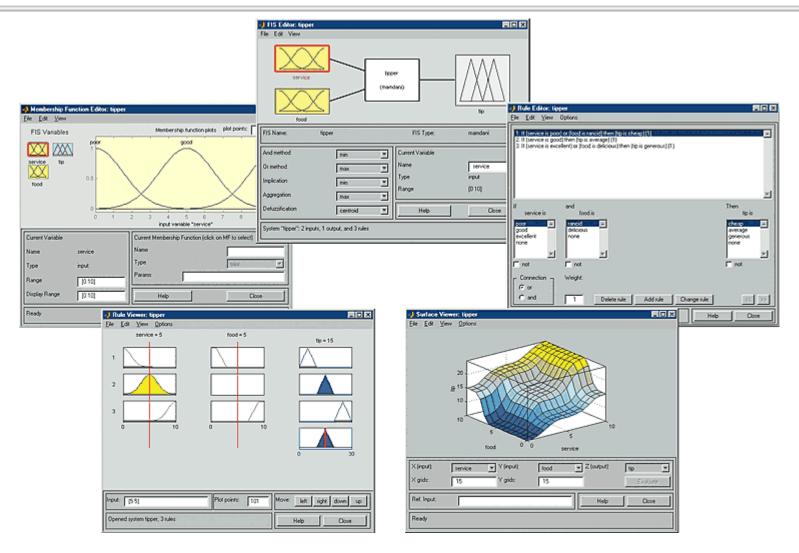
- 1. Fuzzify Inputs
- 2. Apply Fuzzy Operator
- 3. Apply Implication Method

CAN PART

- 4. Aggregate All Outputs
- 5. Defuzzify

ECOGEOMORPHOLOGY & TOPOGRAPHIC

Dinner for Two


FIS WORKSHOP PLAN

- A. Some Terminology & Definitions
 - B. Building your own Inference System
 - C. Some Example FIS Applications
 - Building an FIS
- E. Applying FIS in Matlab
- F. Applying FIS spatially
- G. Building Your Own FIS
 - H. Summary of Key Concepts

MATLAB FUZZY LOGIC TOOLBOX

THE FIS FILE (*.FIS)

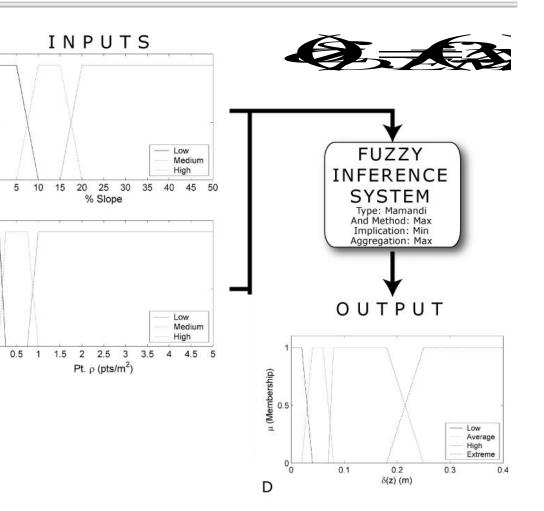
- Simple ascii text file
- Computing w/ words
- Has Header ->
- Section for Inputs
- Section for Outputs
- Rule Table

```
😑 input_veg.asc 📔 GrazingProb_3input.fis 📄 VegCapacityBeaver_2input.fis
      [System]
   2
      Name='VegCapacityBeaver'
      Type='mamdani'
   4
      Version=2.0
   5
      NumInputs=2
      NumOutputs=1
   6
   7
      NumRules=25
   8
      AndMethod='min'
  9
      OrMethod='max'
      ImpMethod='min'
 10
      AggMethod='max'
 11
      DefuzzMethod='centroid'
 12
 13
 14
      [Input1]
      Name='RiparianVegPrefCover'
 15
```


DEFINING MEMBERSHIP FUNCTIONS

u (Membership)

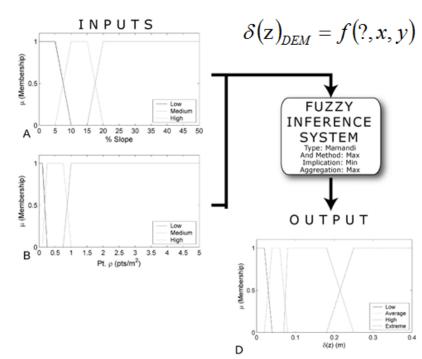
μ (Membership)


0.5

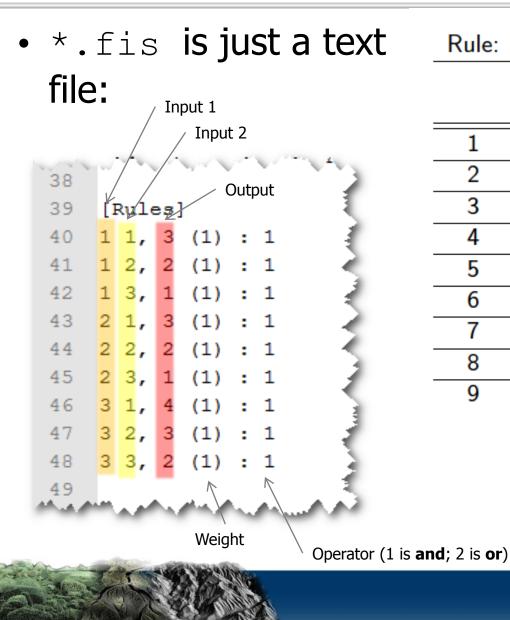
B

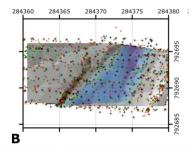
0.5

0


- Define Inputs & Output
- Define number of categories in each
- Represent categorical uncertainty (vagueness) with membership functions
- Choose shape (triangular, trapezoidal, sinusoidal)
- Specify each...
- Provide 'words' for categories

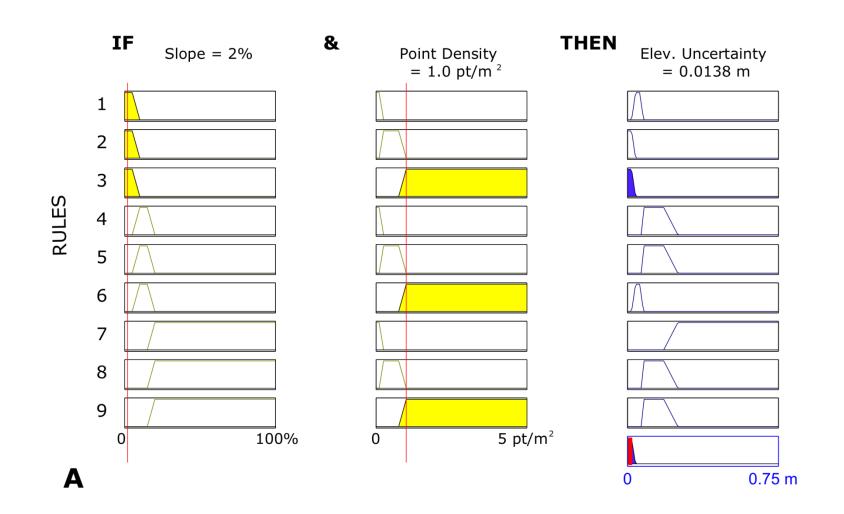
DEFINING MEMBERSHIP FUNCTIONS


• *.fis is just a text file:

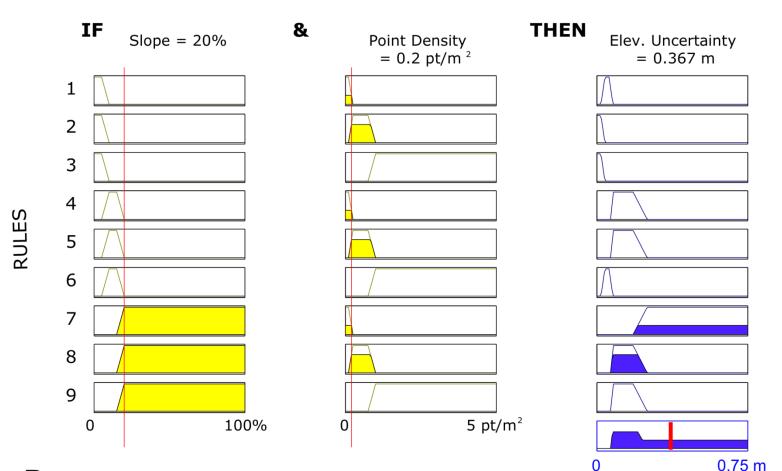

• Edit to specify membership functions...

```
11 A.G.A. n. J= h.J.X
    DefuzzMethod='centroid'
12
13
   [Input1]
14
15
   Name='Slope'
   Range=[0 10000]
16
17
    NumMFs=3
18
   MF1='Low':'trapmf',[0 0 5 10]
19
   MF2='Medium':'trapmf', [5 10 15 20]
   MF3='High':'trapmf', [15 20 10000 10000]
20
21
22
   [Input2]
   Name='PointDensity'
23
   Range=[0 100]
24
25
    NumMFs=3
   MF1='Low':'trapmf',[0 0 0.1 0.25]
26
   MF2='Medium':'trapmf', [0.1 0.25 0.75 1]
27
   MF3='High':'trapmf',[0.75 1 100 100]
28
29
   [Output1]
30
   Name='ElevUncertainty'
31
    Range=[0 1.5]
32
33
    NumMFs=4
   MF1='Low':'trapmf', [0 0 0.03 0.06]
34
   MF2='Average':'trapmf',[0.03 0.06 0.08 0.10]
35
   MF3='High':'trapmf', [0.08 0.10 0.20 0.25]
36
    MF4='Extreme':'trapmf', [0.20 0.25 1.5 1.5]
37
38
39
    [Rules]
```

BUILD THE RULE TABLE...



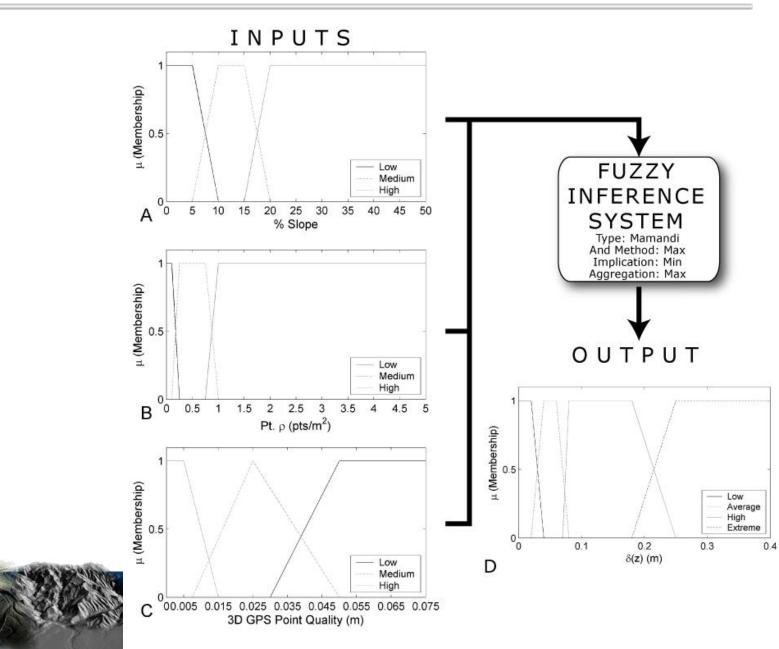
Rule:	Inp	Output	
	Slope	Ρt . <i>ρ</i>	$\delta(z)$
	%	m/pts^2	m
1	Low	Low	Average
2	Low	Medium	Low
3	Low	High	Low
4	Medium	Low	High
5	Medium	Medium	High
6	Medium	High	Average
7	High	Low	Extreme
8	High	Medium	High
9	High	High	High



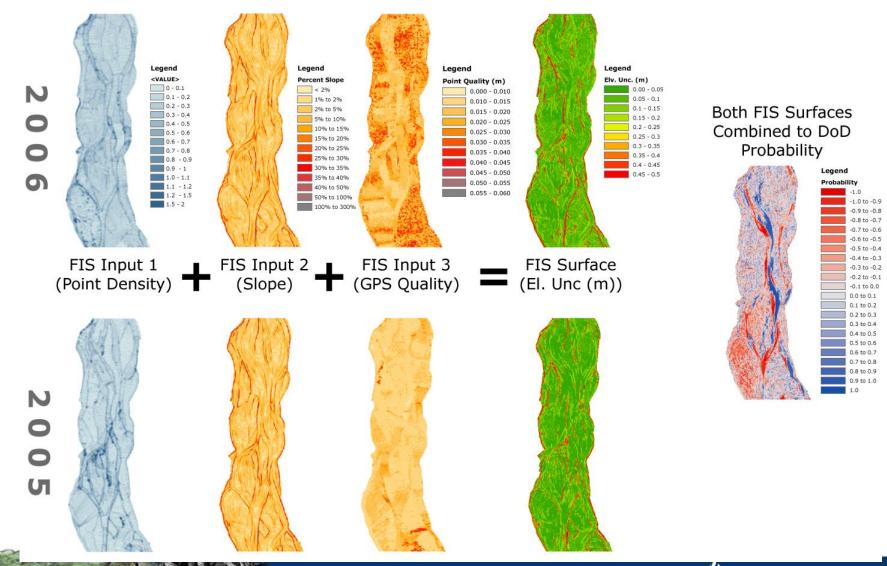
EXAMPLE IMPLEMENTATION (2-RULE)

EXAMPLE IMPLEMENTATION

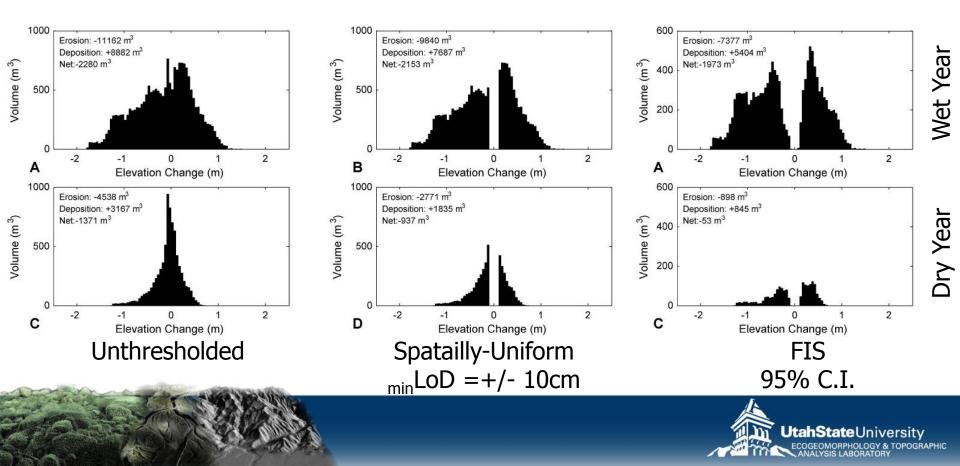
В

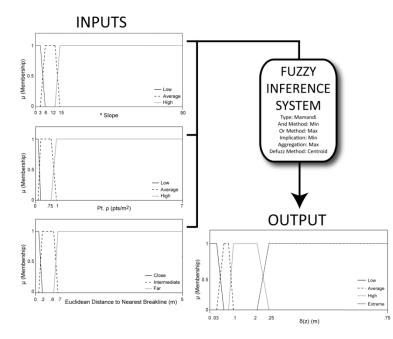

FIS WORKSHOP PLAN

- A. Some Terminology & Definitions
 - B. Building your own Inference System
- C. Some Example FIS Applications
 - D. Building an FIS
- E. Applying FIS in Matlab
- F. Applying FIS spatially
 - G. Building Your Own FIS
 - H. Summary of Key Concepts

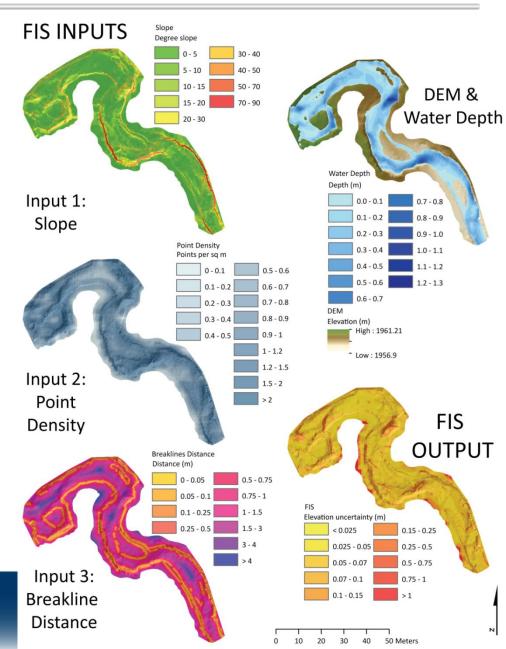


LETS APPLY THIS WITH A REAL EXAMPLE


APPLY FIS ON CELL BY CELL BASIS

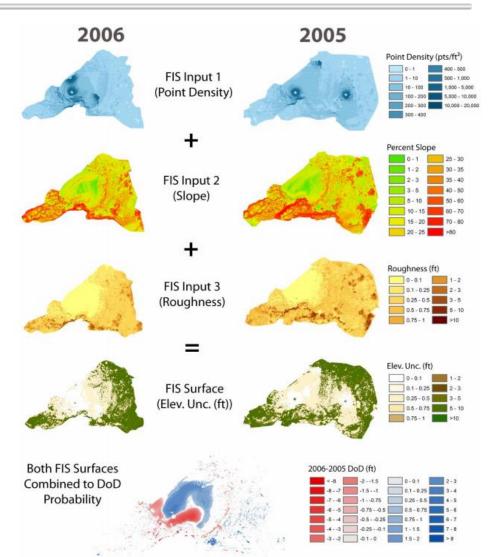

WHAT DOES FIS DO?

- Recovers some low magnitude change & discards some higher magnitude change
- More realistic bimodal distribution...



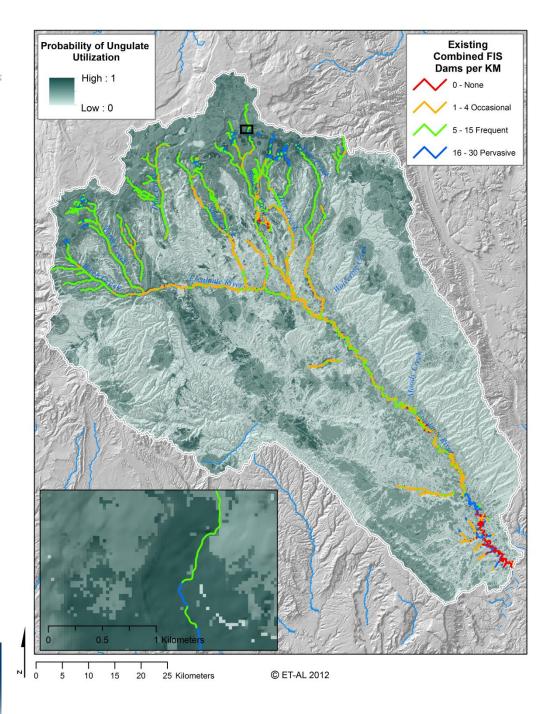
AN FIS USING BREAKLINES...

- 3 Inputs
 - Slope
 - Point Density
 - Distance to breakline



AN FIS FOR TLS DATA

		Inpu	ıts→	Output
Rule	Slope	Point Density	Roughness	Elevation Uncertainty
1	Low	Sparse	Smooth (sand)	Average
2	Low	Medium	Smooth (sand)	Average
3	Low	Dense	Smooth (sand)	Low
4	Medium	Sparse	Smooth (sand)	High
5	Medium	Medium	Smooth (sand)	Average
6	Medium	Dense	Smooth (sand)	Low
7	High	Sparse	Smooth (sand)	High
8	High	Medium	Smooth (sand)	Average
9	High	Dense	Smooth (sand)	Average
10	Low	Sparse	Rough (Gravel/Cobble)	High
11	Low	Medium	Rough (Gravel/Cobble)	Average
12	Low	Dense	Rough (Gravel/Cobble)	Average
13	Medium	Sparse	Rough (Gravel/Cobble)	Extreme
14	Medium	Medium	Rough (Gravel/Cobble)	High
15	Medium	Dense	Rough (Gravel/Cobble)	Average
16	High	Sparse	Rough (Gravel/Cobble)	Extreme
17	High	Medium	Rough (Gravel/Cobble)	High
18	High	Dense	Rough (Gravel/Cobble)	Average
19	Low	Sparse	Very Rough (Boulder/Veg)	Extreme
20	Low	Medium	Very Rough (Boulder/Veg)	Extreme
21	Low	Dense	Very Rough (Boulder/Veg)	High
22	Medium	Sparse	Very Rough (Boulder/Veg)	Extreme
23	Medium	Medium	Very Rough (Boulder/Veg)	Extreme
24	Medium	Dense	Very Rough (Boulder/Veg)	High
25	High	Sparse	Very Rough (Boulder/Veg)	Extreme
26	High	Medium	Very Rough (Boulder/Veg)	Extreme
27	High	Dense	Very Rough (Boulder/Veg)	Extreme

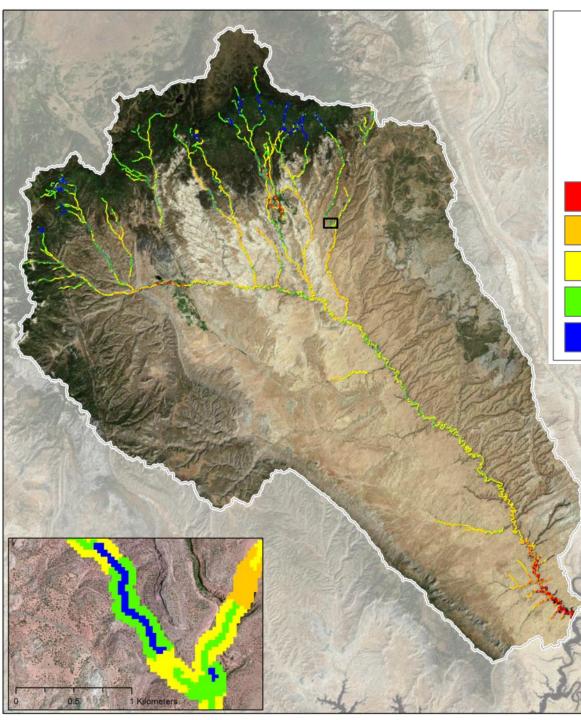


From: Leary et al. (2012)

A VECTOR MODEL & A RASTER MODEL

 How do I run a vector model vs. a raster model?

THE KEY....


• Where do you put evalfis()?

- Vector -> Inside a loop going through each row

Raster -> In nested loop or vectorized matrix operation

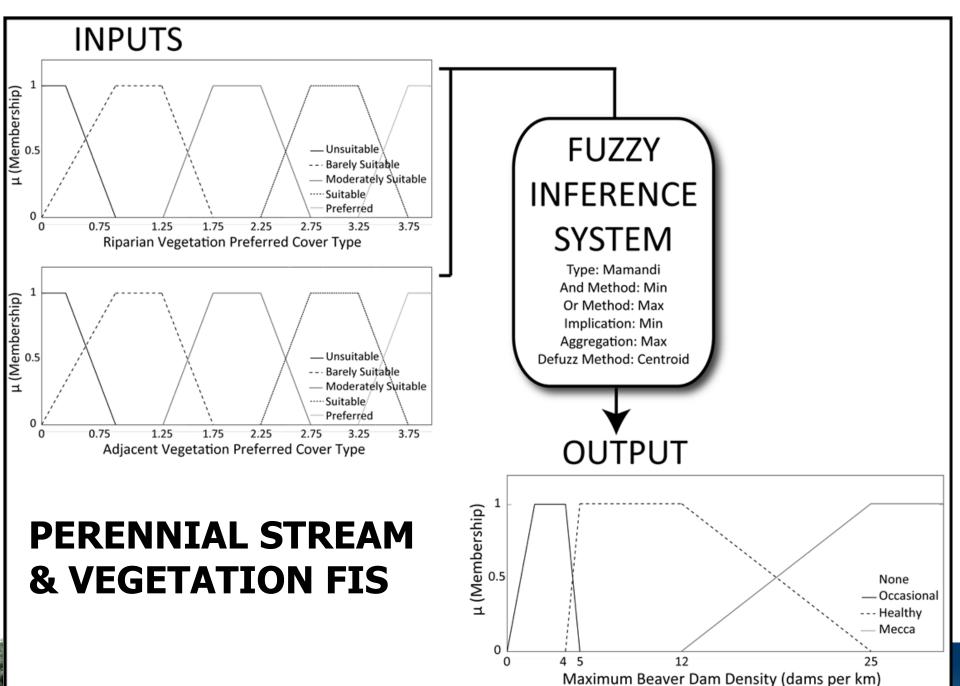
	case 2
18 -	
9	<pre>% Prep Inputs & Get Addresses Dialed</pre>
o —	<pre>FISin1 = inputRasters(1,:,:);</pre>
1 —	<pre>noData1 = find(isnan(FISin1) == 1);</pre>
2 —	Data1 = find(isnan(FISin1) == 0);
and all is a	
WWW	
	& FIS calculation
	<pre>% FIS calculation</pre>
-	<pre>% FIS calculation GrazeCapacity(DataCells)=evalfis([FISin1(DataCells) FISin2(DataCells)], userFIS);</pre>
-	

Existing LANDFIRE Land Cover Dam-building Material Classification

Bank (30 m) & Riparian (100 m) Buffers

- 0 Unsuitable Material
- 1 Barely Suitable Material
- 2 Moderately Suitable Material
- 3 Suitable Material
- 4 Preferred Material

GIS Vegetation Output


 Evidence of riparian vegetation to support dam building activity

25 Kilometers

 Evidence of adjacent vegetation to support

expanding activity

© ET-AL 2012

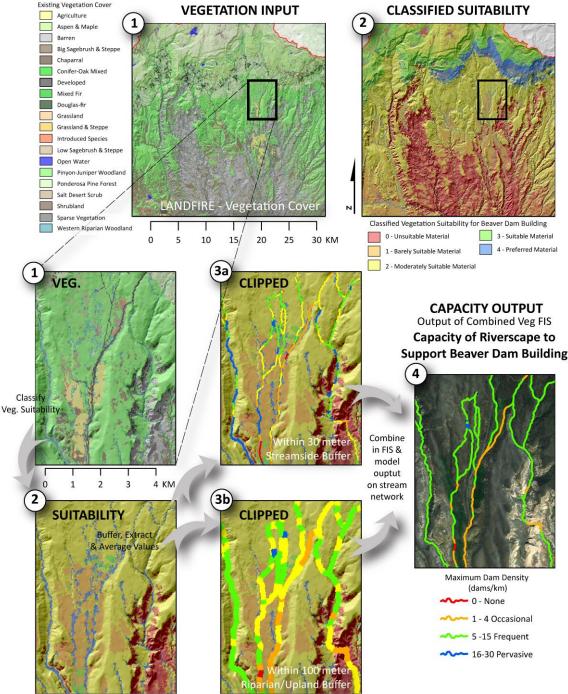
MEMBERSHIP FUNCTIONS (*.FIS)

- Simple ascii text file
- Computing w/ words

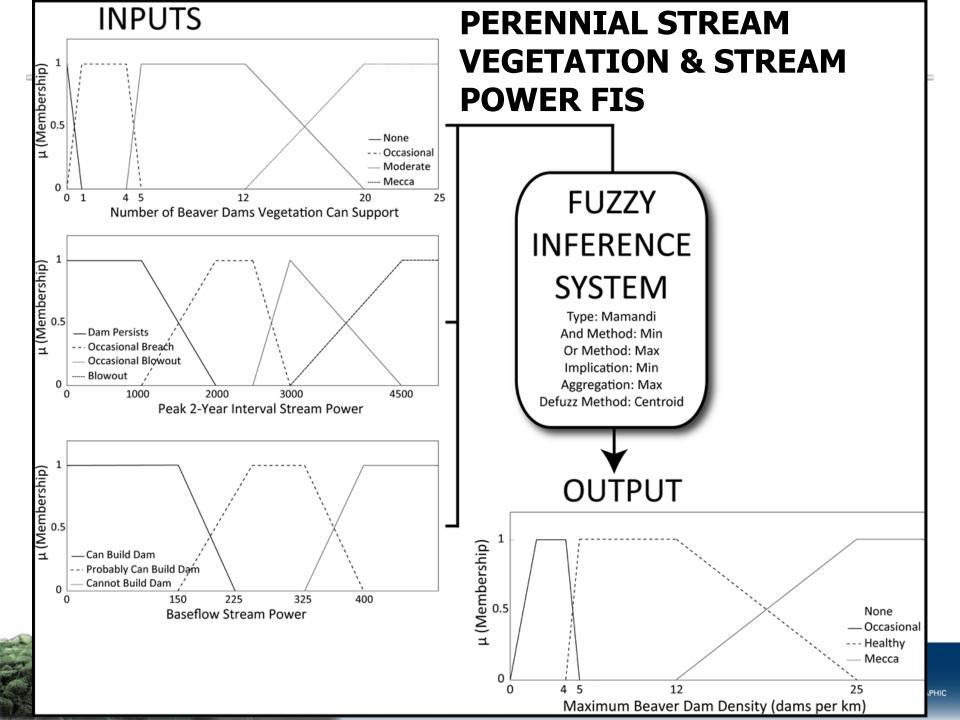
Type='mamdani' Version=2.0 NumInputs=2 NumOutputs=1 NumRules=25 AndMethod='min' OrMethod='max' ImpMethod='min' AggMethod='max' DefuzzMethod='centroid'	L	[System]
<pre>Version=2.0 NumInputs=2 NumOutputs=1 NumRules=25 AndMethod='min' OrMethod='max' ImpMethod='max' DefuzzMethod='centroid' [Input1]</pre>	2	Name='VegCapacityBeaver'
NumInputs=2 NumOutputs=1 NumRules=25 AndMethod='min' OrMethod='max' ImpMethod='min' AggMethod='max' DefuzzMethod='centroid' [Input1]	5	Type='mamdani'
NumOutputs=1 NumRules=25 AndMethod='min' OrMethod='max' ImpMethod='min' AggMethod='max' DefuzzMethod='centroid' [Input1]	ł	Version=2.0
NumRules=25 AndMethod='min' OrMethod='max' ImpMethod='min' AggMethod='max' DefuzzMethod='centroid' [Input1]	5	NumInputs=2
AndMethod='min' OrMethod='max' ImpMethod='min' AggMethod='max' DefuzzMethod='centroid' [Input1]	5	NumOutputs=1
OrMethod='max' ImpMethod='min' AggMethod='max' DefuzzMethod='centroid' [Input1]	,	NumRules=25
ImpMethod='min' AggMethod='max' DefuzzMethod='centroid' [Input1]	3	AndMethod='min'
AggMethod='max' DefuzzMethod='centroid' [Input1]	9	OrMethod='max'
DefuzzMethod='centroid')	ImpMethod='min'
[Input1]	L	AggMethod='max'
[Input1]	2	DefuzzMethod='centroid'
· · ·	5	
· · ·	Į	[Input1]
		· · ·
	м.	
	1 19	A CONTRACTOR OF
A CONTRACTOR OF THE OWNER	1.90	

```
_4 y...npat1
   Name='RiparianVegPrefCover'
15
16 Range=[0 4]
17
   NumMFs=5
18 MF1='UnsuitableMaterial':'trimf',[0 0 1]
MF2='BarelySuitableMaterial':'trimf',[0 1 2]
20 MF3='ModeratelySuitableMaterial':'trimf',[1 2 3]
MF4='SuitableMaterial' : 'trimf' , [2 3 4]
MF5='PreferredMaterial' : 'trimf' , [3 4 4]
23
24 [Input2]
25 Name='AdjacentVegPrefCover'
26 Range=[0 4]
27
   NumMFs=5
MF1='UnsuitableMaterial':'trimf',[0 0 1]
MF2='BarelySuitableMaterial':'trimf', [0 1 2]
30 MF3='ModeratelySuitableMaterial':'trimf', [1 2 3]
MF4='SuitableMaterial' : 'trimf' , [2 3 4]
MF5='PreferredMaterial' : 'trimf' , [3 4 4]
33
34 [Output1]
35 Name='BeaverDamsVegCanSupport'
36 Range=[0 45]
37 NumMFs=4
38 MF1='None': 'trimf', [0 0 1]
39 MF2='Occasional':'trapmf', [0 1 4 5]
40 MF3='Moderate':'trapmf', [4 5 12 20]
   MF4='Mecca':'trapmf', [12 20 45 45]
11
```

THE RULE TABLE...

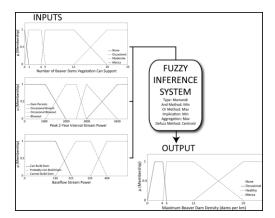

33	T	di le	551			÷	NV2	
44	1	1,	1	(1)		1	15	
45	2	1,	2	(1)		1		
46	3	1,	2	(1)	:	1		
47	4	1,	2	(1)	:	1	- <	
48	5	1,	3	(1)	:	1		
49	1	2,	2	(1)	:	1	- 3	
50	2	2,	2	(1)	:	1	- 3	
51	3	2,	2	(1)	:	1	- 5	
52	4	2,	3	(1)	:	1	- 5	
53	5	2,	3	(1)	:	1	- 5	
54	1	з,	2	(1)	:	1	1	
55	2	з,	2	(1)	:	1	- 3	
56	3	з,	3	(1)	:	1	- 2	
57	4	з,	3	(1)	:	1	- 2	
58	5	з,		(1)	:	1	~ 2	
59	1	4,	2	(1)	:	1		
60	2	4,	2	(1)	:	1	- 2	
61	3	4,	3	(1)	:	1	- 3	
62	4	4,	3	(1)	÷	1		
63	5	4,	3	(1)	÷	1	- 2	
64	1	5,	2	(1)	÷	1		
65	2	5,	3	(1)	•	1		
66	3	5,	3	(1)	÷	1		
67	4	5,	4	(1)	•	1	- ₹	
68	5	5,	4	(1)	:	1		
6 Mar	-		М	1	81	1		

		IN	יטי	ГS		OUTPUT
	IF	Suitability of Streamside Vegetation		Suitability of Riparian/Upland Vegetation		Dam Density Capacity
	1	Unsuitable	&	Unsuitable	, then	None
	2	Barely Suitable	&	Unsuitable	, then	Occasional
	3	Moderately Suitable	&	Unsuitable	, then	Occasional
	4	Suitable	&	Unsuitable	, then	Occasional
	5	Preferred	&	Unsuitable	, then	Frequent
	6	Unsuitable	&	Barely Suitable	, then	Occasional
	7	Barely Suitable	&	Barely Suitable	, then	Occasional
	8	Moderately Suitable	&	Barely Suitable	, then	Occasional
	9	Suitable	&	Barely Suitable	, then	Frequent
	10	Preferred	&	Barely Suitable	, then	Frequent
	11	Unsuitable	&	Moderately Suitable	, then	Occasional
ŝ	12	Barely Suitable	&	Moderately Suitable	, then	Occasional
SULES	13	Moderately Suitable	&	Moderately Suitable	, then	Frequent
~	14	Suitable	&	Moderately Suitable	, then	Frequent
	15	Preferred	&	Moderately Suitable	, then	Frequent
	16	Unsuitable	&	Suitable	, then	Occasional
	17	Barely Suitable	&	Suitable	, then	Occasional
	18	Moderately Suitable	&	Suitable	, then	Frequent
	19	Suitable	&	Suitable	, then	Frequent
	20	Preferred	&	Suitable	, then	Frequent
	21	Unsuitable	&	Preferred	, then	Occasional
	22	Barely Suitable	&	Preferred	, then	Frequent
	23	Moderately Suitable	&	Preferred	, then	Frequent
	24	Suitable	&	Preferred	, then	Pervasive
	25	Preferred	&	Preferred	, then	Pervasive



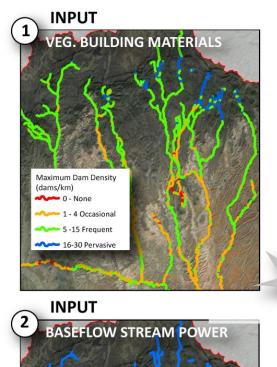
VEG MODEL...

- 1. LANDFIRE Vegetation
- Classify in terms of suitability for dam building
- Clip down to 30 m and 100 m stream buffers
- 4. Run FIS Model to transfer raster to vector...



NOTE: Buffers in (3) only applied to perennial streams

RULE TABLE...


				INPUTS				OUTPUT
	IF	Vegetative Dam Density Capacity (FIS)		Baseflow Stream Power		2 Year Flood Stream Power		Dam Density Capacity
	1	None	&	-	&	-	, then	None
	2	-	&	Cannot Build Dam	&	-	, then	None
	3	Occasional	&	Can Build Dam	&	Dam Persists	, then	Occasional
	4	Frequent	&	Can Build Dam	&	Dam Persists	, then	Frequent
	5	Pervasive	&	Can Build Dam	&	Dam Persists	, then	Pervasive
	6	Occasional	&	Can Build Dam	&	Occasional Breach	, then	Occasional
	7	Frequent	&	Can Build Dam	&	Occasional Breach	, then	Frequent
	8	Pervasive	&	Can Build Dam	&	Occasional Breach	, then	Frequent
	9	Occasional	&	Can Build Dam	&	Occasional Blowout	, then	Occasional
	10	Frequent	&	Can Build Dam	&	Occasional Blowout	, then	Occasional
S	11	Pervasive	&	Can Build Dam	&	Occasional Blowout	, then	Frequent
RULES	12	Occasional	&	Can Build Dam	&	Blowout	, then	Occasional
2	13	Frequent	&	Can Build Dam	&	Blowout	, then	Occasional
	14	Pervasive	&	Can Build Dam	&	Blowout	, then	Occasional
	15	Occasional	&	Can Probably Build Dam	&	Occasional Breach	, then	Occasional
	16	Frequent	&	Can Probably Build Dam	&	Occasional Breach	, then	Frequent
	17	Pervasive	&	Can Probably Build Dam	&	Occasional Breach	, then	Frequent
	18	Occasional	&	Can Probably Build Dam	&	Occasional Blowout	, then	Occasional
	19	Frequent	&	Can Probably Build Dam	&	Occasional Blowout	, then	Occasional
	20	Pervasive	&	Can Probably Build Dam	&	Occasional Blowout	, then	Frequent
	21	Occasional	&	Can Probably Build Dam	&	Blowout	, then	Occasional
	22	Frequent	&	Can Probably Build Dam	&	Blowout	, then	Occasional
	23	Pervasive	&	Can Probably Build Dam	&	Blowout	, then	Occasional

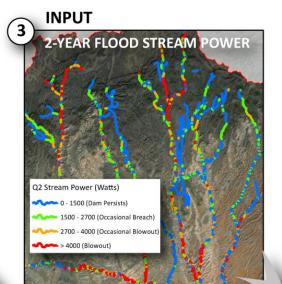
COMBINED

- 1. Veg FIS
- 2. Baseflow (can they build a dam?)
- 2 Year Flood (does dam blow out)
- = Resulting Capacity

Baseflow Stream Power (Watts)

5

185-360 (Probably can build dam)


10

15

25

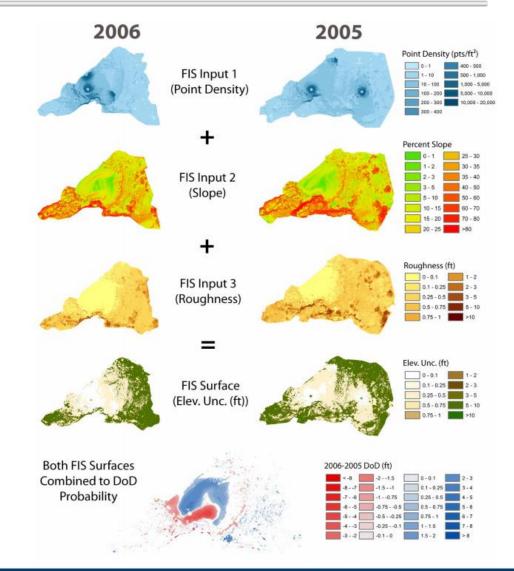
20

30 KM

<section-header>

OUTPUT

FIS WORKSHOP PLAN


- A. Some Terminology & Definitions
- B. Building your own Inference System
- C. Some Example FIS Applications
- D. Building an FIS
- E. Applying FIS in Matlab
- F. Applying FIS spatially
 - G. Building Your Own FIS
 - H. Summary of Key Concepts

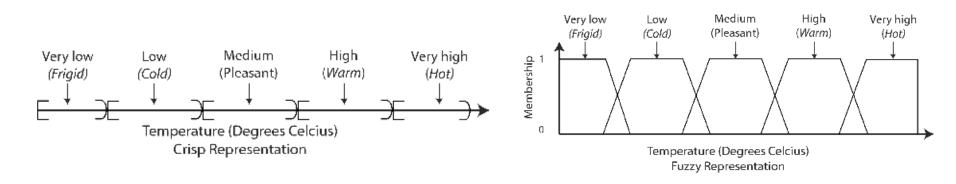
TAKE A 2 INPUT FIS FILE... MAKE IT 3

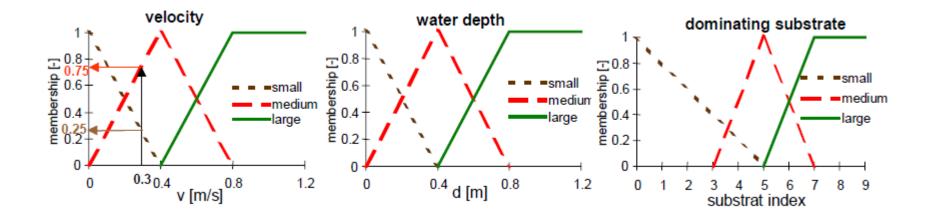
- Adjust header
- Add one input
- Adjust rule table
- Visualize in Matlab to see if it works like you thought it should

FIS WORKSHOP PLAN

- A. Some Terminology & Definitions
- B. Building your own Inference System
- C. Some Example FIS Applications
- D. Building an FIS
- E. Applying FIS in Matlab
 - F. Applying FIS spatially
 - G. Building Your Own FIS
 - H. Summary of Key Concepts

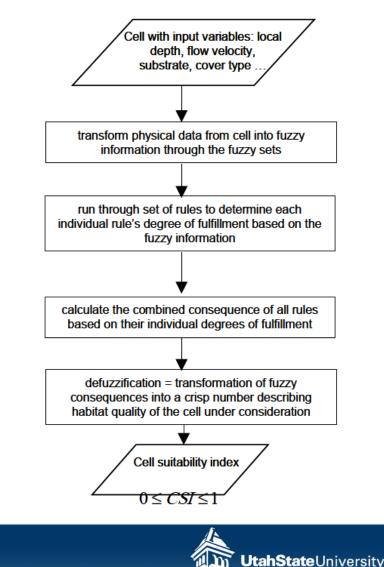
SUMMARY


- FIS is computing with words flexible framework for combining imprecise information and inputs you have to get the output you want
- FIS is an excellent way of explicitly accounting for categorical uncertainty (i.e. ambiguity) associated with rules
- FIS requires some continuous input & produces continuous outputs
- Output explicitly represents uncertainty
- Sensitivity to MF shape and individual rules low
- Sensitivity to output range and MF types high



EXTRA SLIDES

CRISP VS. FUZZY SETS...


Fuzzy set theory... useful for classifying continuous variables

STEPS IN A FUZZY INFERENCE SYSTEM

- 1. Define output categories and membership functions
- 2. Decide inputs
 - 1. Define categories and membership functions for each input
- 3. Build rule table (weight rules if desired)
- 4. Apply each relevant rule
- 5. Method for combining rules to
- 6. Method for defuzzifying output (back to crisp value)

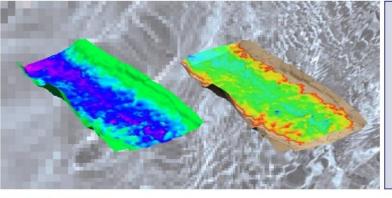
Schneider M and Jorde K. 2003. Fuzzy-Rule Based Models for the Evaluation of Fish Habitat Quality and Instream Flow Assessment, Proc. International IFIM Users Workshop: Fort Colins, CO, 22 pp.

ANALYSIS LABORATOR

CASiMiR

• There is an English version...

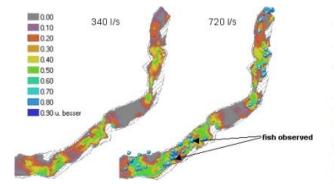
CAJiMiR


U Ir

Universität Stuttgart Institut für Wasserbau

Sie Schneider & Jorde Ecological Engineering GmbH

Computer Aided Simulation Model for Instream Flow Requirements


Home	Workshops	Anwendungen	Download	Publikationen	Kontakt

Über CASiMiR

Informieren Sie sich über diese einzigartige Fuzzy-Logik Software. <u>Hier</u> finden Sie alle Infos zu den Funktionen und Anwendungen der Software.

Software downloaden Hier finden Sie die neusten Versionen des CASiMiR Programmes.

Willkommen

Auf der Homepage zu CASiMiR - dem Simulationssystem zur Untersuchung von Gewässerhabitaten. Wir freuen uns, dass Sie sich für unsere CASiMiR Software interessieren. Diese Internetseite stellt Ihnen einige <u>Anwendungsmöglichkeiten</u> für die Software vor. Im <u>Downloadbereich</u> stellen wir Ihnen einzelne Module von CASiMiR zur freien Nutzung zur Verfügung. Mit Hilfe einzelner Fallbeispiele können Sie selbst erste Modellierungen durchführen. Wenn Sie weitere Fragen haben und Informationen möchten, wenden Sie sich an <u>Kontakt</u>. Außer Informationen zum Modell haben wir auch eine Liste von <u>Publikationen</u> mit Bezug zu CASiMiR bereit gestellt.

Kontakt aufnehmen

Wir freuen uns von Ihnen Rückmeldungen zu bekommen. Für Fragen können Sie uns per <u>Email</u> erreichen an der <u>Universität Stuttgart</u> oder bei der <u>sie GmbH</u>

FIS WORKSHOP PLAN

- A. Some Terminology & Definitions
 - B. Some Example FIS Applications
 - C. Building an FIS
- D. Applying FIS in Matlab
- E. Applying FIS spatially
- F. Building Your Own FIS
 - G. FIS within GCD 5
 - H. Summary of Key Concepts

USING THE GCD SOFTWARE... FIS

💸 Survey Library			GCD Standard Workflow	Using Fuzzy Inference System, Spatial Coherence Filter & Bayesian Updating as perWheaton et al. (2010) ESPL
DEM Survey		5Dec_D		Old DEM of Difference) Calculation
Name	Type Source ror Properties Name: FIS Error Calculation Methods: Error Value (m) GPS_2Input_PD_SLP Method Error Value (m) GPS_2Input_PD_SLP ntkGPS 0.06 FIS Properties: Fis Input Associated Surface Sope V V PointDensity V V Help OK Cancel	l l l l l l l l l l l l l l l l l l l	Bob Propagated Error Surface a Priori Probability Surface that DoD Change is Real Baye sian Up date Change Change	Pod Fuzzy Inference System to Estimate Errors in DEM Old FIS Error Surface Pare DoD & agated Error Ilate T-Score) Conditional Probability Surface that DoD Change is Real of a Priori Probability r Probability that DoD pe is Real Confidence (e.g. 95%) Threshold DoD Probabilistically

FIS LIBRARY

 You can add as many FIS to library as your want

Name	Path	
TS_2Input_PD_SLP _Metric		ata\Roaming\GCD\FIS Sample
4	 	
•		4

I FIS Library File	~
	×
IS file: C:\Users\Joe Wheaton\AppData\Roaming\GCD\FIS Sam	ple Files\TS_2Input_PD_SLP_M
ame: TS_2Input_PD_SLP_Metric	
Help	OK Cancel
Fuzzy Inference System Editor	
[System] Name=TS_2Input_PD_SLP' Type='mamdani' Version=2.0 NumInputs=2 NumOutputs=1 NumRules=9 AndMethod='min' OrMethod='max' ImpMethod='max' DefuzzMethod=centroid' [Input1] Name='Slope' Range=[0 10000] NumMFs=3 MF1='Low':trapmf',[5 10 15 20] MF3='High':trapmf',[15 20 10000 10000] [Input2] Name='PointDensity' Range=[0 100] NumMFs=3	E

[Output 1]

Help

Name='ElevUncertainty' Range=[0 1.5] NumMFs=4

MF1='Low':trapmf',[0 0 0.02 0.04] MF2='Average':trapmf',[0.02 0.04 0.06 0.08] MF3='High':trapmf',[0.06 0.08 0.18 0.25]

Edit

Save

Close

Save As..

YOU RUN FIS IN ERROR SURFACES TAB

- Error surfaces created in Survey Library
- Inputs to FIS loaded in Associated Surfaces Tab

urvey Name:			
urvey Date (optional): _/_/			
DEM Survey Associated Surfaces Error Calculation	s		
🚽 Σ 🗙 🏶 💽	_		
Na Associate an existing raster as an error surfa	Source		
Help		Save Survey	Cancel

