

# Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

# **UNCERTAINTY IN GIS... & WATS 6915 WRAP UP**

Joe Wheaton



## **HOUSEKEEPING**

- Lab 3
- Any questions?









#### THIS WEEK'S LAB

## Lab 3: Reproducing Maps — Geologic Map

- Teach you how to manipulate display properties and symbology to reproduce a map in as close as possible a fashion to the original.
- Teach you how to extract summary statistics and data from existing data
- Teach you how to make a BETTER map by getting out of ArcGIS!



#### TODAY'S PLAN... UNCERTAINTY IN GIS

- I. Uncertainty & Error
- II. GIS Errors
- III. Error Propagation
- IV. All Bad?
- V. Summary of GIS Fundamentals

"But there are also unknown unknowns: the ones we don't know we don't know."

-Donald Rumsfeld

"It's not the things you don't know that matter, it's the things you know that ain't so."

- Will Rogers

## **UNCERTAINTY...**

Lack of sureness about something... NOT a lack of knowledge.

## To the general public and decision makers:

- Sign of weakness
- Like saying you don't know anything
- Confusing

## To you and I (scientists):

- A statement of knowledge
- Useful information
- Full-employment act

#### MORE CONSTRUCTIVE DEFINITION

Considered in terms of sources

 Provides a rationale for treating different sources differently





#### **UNCERTAINTY REVISED**

- Uncertainty does not equate to a lack of knowledge
- A statement of uncertainty is not a sign of weakness... it is useful information
- What in life is worth having that you didn't have to take a risk to get?" – Mike Clark



Figure from Wheaton et al. (2008)



#### TODAY'S PLAN...

- I. Uncertainty & Error
- **II. GIS Errors**
- III. Error Propagation
- IV. All Bad?
- V. Summary of GIS Fundamentals

#### **GIS DATA ACCURACY**

- Accuracy is how close an observation (or GIS data layer) is to the truth
- Error is the measure of how far a measure or observation deviates from the truth
- Many different ways to have errors or blunders

• Are they same?

#### OTHER WAYS TO BE WRONG...

### Spatial data accuracy issues:

a) Positional accuracy



b) Attribute accuracy



c) Logical consistency



d) Completeness



## FOUR END MEMBERS

 Positional accuracy of intersection of two freeways high average accuracy, high precision



high average accuracy, low precision



low average accuracy, high precision



low average accuracy, low precision





#### PRECISION OR RESOLUTION

## **NOT THE SAME AS ACCURACY!**

Precision: the exactness of measurement or description

- the "size" of the "smallest" feature that can be displayed, recognized, or described
- For raster data, it is the size of the pixel (resolution)
- For vector point data, it is the point density
- resolution and positional accuracy
  - you can see a feature (resolution), but it may not be in the right place (accuracy)
  - higher accuracy generally costs much more to obtain than higher resolution

#### **HOW POSITIONAL ACCURACY IS**

### **CALCULATED**

- All you need is measured coordinates and 'true' coordinates
- The lower the error distance, the more accurate...





error distance = 
$$\sqrt{(x_t - x_d)^2 + (y_t - y_d)^2}$$



#### IMPLICATION OF ERROR DISTRIBUTIONS

- How would I get a plot like this?
- If we take 95% of the error...
- With same mean, but different distributions, implications are quite different...





positional error





#### **HOW TO CALCULATE THOSE POSITOINAL**

### **ERRORS**

• Find, define or assume *true* values

 Find values of layer to calculate errors for

Create error field

Plug and chug

 THIS IS NOT TECHNICALLY CORRECT



## A CLOSER LOOK





positional error



• 95% of the data... depends on distribution shape...

#### **PUT IT ALL TOGETHER...**

- Simple excel or field calculator exercise?
- How would you do it?

| ID | x<br>(true) | ×<br>(data) | ×<br>differ-<br>ence | (x<br>differ-<br>ence) <sup>2</sup> | y<br>(true) | y<br>(data) | y<br>differ-<br>ence | (y<br>differ-<br>ence) <sup>2</sup> | sum<br>× diff <sup>2</sup> +<br>y diff <sup>2</sup> |
|----|-------------|-------------|----------------------|-------------------------------------|-------------|-------------|----------------------|-------------------------------------|-----------------------------------------------------|
| 1  | 12          | 10          | 2                    | 4                                   | 288         | 292         | -4                   | 16                                  | 20                                                  |
| 2  | 18          | 22          | -4                   | 16                                  | 234         | 228         | 6                    | 36                                  | 52                                                  |
| 3  | 7           | 12          | -5                   | 25                                  | 265         | 266         | -1                   | 1                                   | 26                                                  |
| 4  | 34          | 34          | 0                    | 0                                   | 243         | 240         | 3                    | 9                                   | 9                                                   |
| 5  | 15          | 19          | -4                   | 16                                  | 291         | 287         | 4                    | 16                                  | 32                                                  |
| 6  | 33          | 24          | 9                    | 81                                  | 211         | 215         | -4                   | 16                                  | 97                                                  |
| 7  | 28          | 29          | -1                   | 1                                   | 267         | 271         | -4                   | 16                                  | 17                                                  |
| 8  | 7           | 12          | -5                   | 25                                  | 273         | 268         | 5                    | 25                                  | 50                                                  |
| 9  | 45          | 44          | 1                    | 1                                   | 245         | 244         | 1                    | 1                                   | 2                                                   |
| 10 | 110         | 99          | 11                   | 121                                 | 221         | 225         | -4                   | 16                                  | 137                                                 |
| 11 | 54          | 65          | -11                  | 121                                 | 212         | 208         | 4                    | 16                                  | 137                                                 |
| 12 | 87          | 93          | -6                   | 36                                  | 284         | 278         | 6                    | 36                                  | 72                                                  |
| 13 | 23          | 22          | 1                    | 1                                   | 261         | 259         | 2                    | 4                                   | 5                                                   |
| 14 | 19          | 24          | -5                   | 25                                  | 230         | 235         | -5                   | 25                                  | 50                                                  |
| 15 | 76          | 80          | -4                   | 16                                  | 255         | 260         | -5                   | 25                                  | 41                                                  |
| 16 | 97          | 108         | -11                  | 121                                 | 201         | 204         | -3                   | 9                                   | 130                                                 |
| 17 | 38          | 43          | -5                   | 25                                  | 290         | 288         | 2                    | 4                                   | 29                                                  |
| 18 | 65          | 72          | -7                   | 49                                  | 277         | 282         | -5                   | 25                                  | 74                                                  |
| 19 | 85          | 78          | 7                    | 49                                  | 205         | 201         | 4                    | 16                                  | 65                                                  |
| 20 | 39          | 44          | -5                   | 25                                  | 282         | 278         | 4                    | 16                                  | 41                                                  |
| 21 | 94          | 90          | 4                    | 16                                  | 246         | 251         | -5                   | 25                                  | 41                                                  |
| 22 | 64          | 56          | 8                    | 64                                  | 233         | 227         | 6                    | 36                                  | 100                                                 |
|    |             |             |                      |                                     |             |             |                      | Sum                                 | 1227                                                |
|    |             |             |                      |                                     |             |             |                      |                                     |                                                     |

 Sum
 1227

 Average
 55.8

 RMSE
 7.5

 NSSDA
 12.9



## WHAT ABOUT POSITIONAL ACCURACY OF SHAPES AS OPPOSED TO VERTICIES?

 Compare true line location to various representations of actual to define epsilon band...





### **MEASUREMENT OF POSITIONAL ACCURACY**

 Usually measured by <u>root mean square error</u>: the square root of the average squared errors

- $RMSE = \sqrt{\frac{e_1^2 + e_2^2 + e_3^2 + \dots + e_n^2}{n-1}}$  where  $e_i$  is the distance (horizontally or vertically )between the tue location of point  $_i$  on the ground, and its location represented in the GIS.
- Loosely we say that the RMSE tells us how far recorded points in the GIS are from their true location on the ground, on average.
- More correctly, based on the normal distribution of errors, 68% of points will be RMSE distance or less from their true location, 95% will be no more than twice this distance, providing the errors are random and not systematic (i.e., the mean of the errors is zero)

#### **DIGITIZATION ERRORS**

- Manual digitizing
  - significant source of positional error (roads, streams, polygons)
- Source map error
  - scale related generalization
  - line thickness
- Operator error
  - under/overshoot
  - time related boredom factor



#### **ERROR – OUT OF DATE**

Belvue Washington... At one time it was 'right'





1997 1936





### **IMPRECISE AND VAGUE**



## **MIXED UP**



## **JUST WRONG**





### **UNCERTAINTY IN ANALYSIS**

- Just because you think it will work, does not guarantee success—Always LOOK at the results of your analysis!
  - What would a certain combination of inputs result in?
  - How is that likely to change across all inputs?
  - Don't underestimate the value of a laugh-test.
- Functional REDUNDANCY:
  - There is almost always another (often faster) way of performing any analysis
  - Should produce the same result... try it?

## DATA QUALITY: HOW GOOD IS YOUR DATA?

#### Scale

- Can be an output issue; at what scale do I wish to display?
- Analyses are only as good as the coarsest input

#### Precision or Resolution

- the exactness of measurement or description
- Determined by input; can output at lower (but not higher) resolution

#### Accuracy

- the degree of correspondence between data and the real world
- Fundamentally controlled by the quality of the input

#### Lineage

The original sources for the data and the processing steps it has undergone

#### Currency

- the degree to which data represents the world at the present moment in time
- Documentation or Metadata
  - data about data: recording all of the above

#### Standards

- Common or "agreed-to" ways of doing things
- Data built to standards is more valuable since it's more easily shareable

#### **ERROR HANDLING 101**

#### Awareness

knowledge of types, sources and effects

#### Minimization

- use of best available data
- correct choices of data model/method

#### Communication

 to end user via metadata, honest and thorough reporting of uncertainties

#### TODAY'S PLAN...

- I. Uncertainty & Error
- II. GIS Errors

## **III. Error Propagation**

- IV. All Bad?
- V. Summary of GIS Fundamentals

#### **ERROR PROPAGATION**

- Methods for assessing the effects of known degrees of error in a model's inputs
  - Producing measures of confidence in model outputs
  - Normally by simulation

#### **DEM DIFFERENCING**

#### RASTER CALCULATOR....



#### MINIMUM LEVEL OF DETECTION

- Distinguish those changes that are real from noise
- Use standard Error Propagation
- Errors assumed to be spatially uniform, but can vary temporally



$$\delta(z) = \sqrt{\left(\delta(z)_{DEM_{old}}\right)^2 + \left(\delta(z)_{DEM_{new}}\right)^2}$$

e.g. 
$$\delta(z) = \sqrt{(10)^2 + (20)^2} = 22.36$$

22.36 cm ≈ 8.8 in

#### See

- •Brasington et al (2000): ESPL
- •Lane et al (2003): *ESPL*
- •Brasington et al (2003): Geomorphology



## **HOW DOES A MINLOD GET APPLIED?**

- You take original DoD, and remove all changes <= minLoD</li>
- For example +/- 20 cm
- How would you do that?
- What is the assumption here?





#### **HOW COULD I REPRESENT AS PROBABILITY?**

- Using inferential statistics, we'll calculate a t-score
- σ<sub>DoD</sub> is the characteristic uncertainty
  - In this case  $\sigma_{DoD}$  =  $_{min}LoD$

$$t = \frac{\left|z_{DEM_{new}} - z_{DEM_{old}}\right|}{\sigma_{DoD}}$$

- Just the ratio of actual change to min LoD change
- Assuming two-tailed test, t is significant at:
  - 68% confidence limitwhen t= 1
  - 95% confidence limit when t=1.96

#### PROBABILITY THAT CHANGE IS REAL







## **APPLY FIS ON CELL BY CELL BASIS**



#### Both FIS Surfaces Combined to DoD Probability



## **SENSITVITY OF THRESHOLD?**



#### TODAY'S PLAN...

- I. Uncertainty & Error
- II. GIS Errors
- III. Error Propagation
- IV. All Bad?
- V. Summary of GIS Fundamentals

#### PHILOSOPHICAL ATTITUDES TO UNCERTAINTY



These contrasting philosophical approaches to dealing with uncertainty are rarely explicitly identified.



#### REDUCE UNCERTAINTY

- Uncertainty is a nuisance
- It should be constrained wherever possible
- Unquantifiable uncertainty difficult or impossible to constrain



#### **COPE WITH UNCERTAINTY**

- Fuller appreciation of types of uncertainty
- Uncertainty still viewed as a nuisance
- Acceptance of uncertainty as a given
- Explicit link to adaptive management



#### **EMBRACE UNCERTAINTY**

- Uncertainty seen as useful information
- Explicit recognition of uncertainty sources
- Use of natural variability as an opportunity
- Explicit linked to adaptive management







## TRANSFORM UNCERTAINTY TYPES

Central to embracing uncertainty

 Many examples of structural uncertainties & uncertainties due to variability can be transformed (and thereby reduced) to unreliability uncertainties



# HOW TO COMMUNICATE UNCERTAINTY WITHOUT SOUNDING LIKE A QUACK?

- Know the **audience** (general public vs. peers)
- Complete transparency of source and type of uncertainties
- Relate **significance** in terms of audience's criteria
- Clear identification of uncertainties leading to risks versus opportunities versus both
- Distinguish between **transformable** uncertainties & total unknowns (e.g. irreducible ignorance)
- Highlight tradeoff between cost of knowing more and taking acceptable risks

## MIX OF COMMUNICATION OPTIONS

| Method                                             | Appropriate For                                                          |
|----------------------------------------------------|--------------------------------------------------------------------------|
| Qualitative Description                            | Unquantifiable and/or unquantified uncertainties                         |
| Probabilities                                      | Expressions of confidence or likelihood                                  |
| Measures of Variance                               | Uncertainties due to variability                                         |
| Upper & Lower Limits (+/-)                         | Well constrained uncertainties due to inexactness                        |
| Fuzzy Numbers                                      | Uncertainties due to vagueness and ambiguity                             |
| Scenarios & Conceptual Models or Simulation Models | Uncertainty about future (gets away from actual prediction)              |
| Definition of Plausible Outcomes                   | Structural & Variability Uncertainties Leading to Predictive Uncertainty |

#### TODAY'S PLAN...

- I. Uncertainty & Error
- II. GIS Errors
- III. Error Propagation
- IV. All Bad?
- V. Summary of GIS Fundamentals

#### IF THE FIRST FOUR WEEKS WAS SLOW

- Sorry....
- Repetition helps (even if a little boring)
- You forget...
- The fundamentals matter
- We'll pick up the pace now...
- Last six weeks will push you





FOR THE WATS 4930/6920 FOLKS...

## WHAT FUNDAMENTALS?

- Introduction Review to GIS
  - Review of Maps (Cat in the Hat)
  - Intro WebGIS
- Abstracting World to Digital Maps
  - Projections & Coordinate Systems
  - Data Types
- Data/Data/Data
  - Remote Sensing/Imagery Data Sources
  - Geoprocessing Intro
  - Editing & Attributing Data + Meta Data
  - Uncertainty in GIS





# WHAT YOU SHOULD HAVE GOTTEN... (so far)

| The above learning outcomes apply to the courses as follows: |                   |                   |           |  |  |
|--------------------------------------------------------------|-------------------|-------------------|-----------|--|--|
| Learning Outcome:                                            | WATS<br>4930/6920 | WATS<br>4931/6921 | WATS 6915 |  |  |
| 1 - GIS Theory                                               | Core              | NA                | Core      |  |  |
| 2 - Profiency in Spatial Analyses & Cartography              | Core              | Partial           | Partial   |  |  |
| 3 - Self-Teaching & Troubleshooting                          | Core              | Core              | Partial   |  |  |
| 4 - Spatial Analysis in Research                             | NA                | Core              | NA        |  |  |
| 5 - Communicating with GIS                                   | Core              | Core              | Core      |  |  |

- 1. **GIS Theory**: Understand the fundamental theory of Geographic Information Science behind Geographic Information Systems (GIS), and in so doing build an awareness of what GIS can and cannot be used for
- 5. **Communicating with GIS**: Become effective in building maps that can be shared with non-GIS users (e.g. PDF maps and interactive webGIS maps)

## SO ALL OF YOU BETTER DAM WELL KNOW:

- How to make an effective map (6 C's)
- How to make an interactive map
- How to make a website
- Understand, read, convert coordinate systems and transform if necessary
- How to create, edit, query, manipulate and display vector data
- How to share GIS data
- ENOUGH GIS to be dangerous
- ENOUGH GIS to tell if someone else is dangerous



## YOU ARE NOT DONE!!!!

- You should know how to teach yourself
  - GIS Help
  - Forums
  - Peers
  - ESRI Community
  - Self-Paced Courses
  - Follow up Courses

#### condensed format.

#### Taught Courses From ESRI (\$\$)

- ArcGIS Desktop I: Getting Started with GIS
- . ArcGIS Desktop II: Tools & Functionality
- ArcGIS Desktop III: GIS Workflows & Analysis

#### Free Self-Paced Courses

- Getting Started in ArcGIS: webinar (9 hours)
- <u>Using ArcMap in ArcGIS Desktop 10</u> webinar (3: hours)
- Other Free Training

#### **Follow Up Courses**

#### At Utah State University

There are too many courses to list, which employ GIS skills that you might learn in WATS 4930/6920 or an equivalent. However, here are a few follow ups that you might find useful:

| Course                   | Title                                                                                      | Cr | Trm       | Notes:                                                                                                     |
|--------------------------|--------------------------------------------------------------------------------------------|----|-----------|------------------------------------------------------------------------------------------------------------|
| BIOL<br>4750/8750        | Introduction to<br>Computer<br>Programming and<br>Database<br>Management for<br>Ecologists | 3? | Fa        | See <u>announcement</u><br><u>here</u> .                                                                   |
| CEE 2240                 | Engineering<br>Surveying                                                                   | 3  | Sp,<br>Su | Fundamentals of geomatics & tacheometric surveying.                                                        |
| ECE 5930                 | Small Satellite<br>Imager Design                                                           | 3  | Sp.       | If you want to learn<br>more about the blimp<br>platforms we covered in<br>Lab 8, this is the class!       |
| WATS 5300/<br>6300       | Remote Sensing of<br>Land Surfaces                                                         | 4  | Sp.       | Covers principles of<br>remote sensing                                                                     |
| WILD 5750/<br>8750       | Applied Remote<br>Sensing                                                                  |    | Fa        | Learn image<br>classification using<br>Imagine                                                             |
| WILD 6900<br>(section 3) | GIS Programming<br>with Phython I                                                          | 1  | Sp        | This is a great follow up<br>that focuses on<br>geoprocessing and<br>scripting in ArcGIS (1/2<br>Semester) |
| WILD 6900<br>(section 4) | GIS Programming<br>with Phython II                                                         | 1  | Sp        | This section focuses on<br>Python scripting with<br>OpenSource GIS<br>libraries (1/2 semester)             |
| WATS 6900                | Restoration<br>Monitoring:<br>Geomorphic<br>Change Detection                               | 1  | Su        | This is an ICRRR short<br>course I teach in Park<br>City the week after<br>finals. 3 days.                 |
| WATS<br>6900             | River Bathymetry<br>Toolkit                                                                | 1  | Su        | This is a new 3 day<br>short course on the<br>River Bathymetry Tookit                                      |
| Ecology<br>Center        | Landscape Genetics                                                                         | ?  | Sp        | Talk to Karen Mock for<br>more information on<br>this course                                               |

# **WATS 4930/6920...** WHERE WE'RE GOING

• WATS 6915... welcome to tag along for any, all or none

| 4930,<br>6920,<br>6915     | WEEK 4  | Working with Data in GIS - End of WATS 6915<br>Lectures | Jan 27* & Jan 29 | Reproducing Maps     Geologic Map                                                       |  |
|----------------------------|---------|---------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------|--|
| 4930,<br>6920,<br>6915     | WEEK 5  | <u>Vector Analyses</u>                                  | Feb 3* & 5*      | 4. <u>Digitizing &amp; Editing</u><br><u>&amp; Sharing Data</u> - Last<br>WATS 6915 Lab |  |
| 4930 &<br>6920             | WEEK 6  | <u>Raster Analyses</u>                                  | Feb 10 & 12*     | 5. <u>Vector Analysis</u>                                                               |  |
| 4930 &<br>6920             | WEEK 7  | <u>Raster Analyses</u>                                  | Feb 19           | 6. Working w/ DEMs                                                                      |  |
| 4930 &<br>6920             | WEEK 8  | GIS Modeling                                            | Feb 24 & 26*     | 7. <u>Building DEMs</u>                                                                 |  |
| 4930 &<br>6920             | WEEK 9  | GIS Modeling                                            | Mar 3 & 5        | 8. <u>Morphometric</u><br><u>Analyses</u> or <u>Habitat</u><br><u>Modelling</u>         |  |
| Spring Break – March 9 -13 |         |                                                         |                  | (Catch Up)                                                                              |  |
| 4930 &<br>6920             | WEEK 10 | Collecting Your Own Data & Synthesis                    | Mar 17 & 19      | 9. <u>Blimp &amp;</u><br><u>Georeferencing Lab</u>                                      |  |
| End of WATS 4930/6920      |         |                                                         |                  |                                                                                         |  |
| 4981 86                    |         |                                                         |                  |                                                                                         |  |